On Jones' index for real $\mathrm W^*$-algebras
Eurasian mathematical journal, Tome 1 (2010) no. 4, pp. 5-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notions of the real coupling constant and the index for real $\mathrm W^*$-algebras are introduced and investigated. The main tool in our approach is the reduction of real $\mathrm W^*$-algebras to involutive $^*$-anti-automorphisms of their complex enveloping von Neumann algebras. Similar to the complex case the values of the index for type II$_1$ real factors are calculated.
@article{EMJ_2010_1_4_a0,
     author = {S. Albeverio and Sh. A. Ayupov and R. A. Dadakhodjaev and A. A. Rakhimov},
     title = {On {Jones'} index for real $\mathrm W^*$-algebras},
     journal = {Eurasian mathematical journal},
     pages = {5--19},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a0/}
}
TY  - JOUR
AU  - S. Albeverio
AU  - Sh. A. Ayupov
AU  - R. A. Dadakhodjaev
AU  - A. A. Rakhimov
TI  - On Jones' index for real $\mathrm W^*$-algebras
JO  - Eurasian mathematical journal
PY  - 2010
SP  - 5
EP  - 19
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a0/
LA  - en
ID  - EMJ_2010_1_4_a0
ER  - 
%0 Journal Article
%A S. Albeverio
%A Sh. A. Ayupov
%A R. A. Dadakhodjaev
%A A. A. Rakhimov
%T On Jones' index for real $\mathrm W^*$-algebras
%J Eurasian mathematical journal
%D 2010
%P 5-19
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a0/
%G en
%F EMJ_2010_1_4_a0
S. Albeverio; Sh. A. Ayupov; R. A. Dadakhodjaev; A. A. Rakhimov. On Jones' index for real $\mathrm W^*$-algebras. Eurasian mathematical journal, Tome 1 (2010) no. 4, pp. 5-19. http://geodesic.mathdoc.fr/item/EMJ_2010_1_4_a0/

[1] Sh. A. Ayupov, A. A. Rakhimov, Sh. M. Usmanov, Jordan, real and Lie structures in operator algebras, MAIA, 418, Kluw. Acad. Pub., 1997 | MR | Zbl

[2] A. Connes, “Spatial theory of von Neumann algebras”, J. Funct. Anal., 35 (1980), 153–164 | DOI | MR | Zbl

[3] J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien, Deuxième, Ganthier Villars, 1969 | MR

[4] T. Giordano, Antiautomorphismes involutifs des facteurs de von Neumann injectifs, Thèse, Universite de Neuchâtel, 1981

[5] U. Haagerup, “Operator valued weights in von Neumann algebras, I”, J. Funct. Anal., 32 (1979), 175–206 | DOI | MR | Zbl

[6] V. F. R. Jones, “Index for Subfactors”, Inventiones Math., 72 (1983), 1–25 | DOI | MR | Zbl

[7] V. F. R. Jones, “On knots invariants related to some statistical mechanical models”, Pacific J. Math., 137 (1989), 311–334 | DOI | MR | Zbl

[8] H. Kosaki, “Extension of Jones' Theory on index to arbitrary factors”, J. Funct. Anal., 66 (1986), 123–140 | DOI | MR | Zbl

[9] H. Kosaki, “A remark on the minimal index of subfactors”, J. Funct. Anal., 107 (1992), 458–470 | DOI | MR | Zbl

[10] L. Bing-Ren, Introduction to operator algebras, World Sci. Pub. Co. Pte. Ltd., Singapore, 1992 | MR

[11] L. Bing-Ren, Real operator algebras, World Sci. Pub. Co. Pte. Ltd., Singapore, 2003 | MR

[12] P. H. Loi, “On the theory of index for type III factors”, J. Operator Theory, 28 (1992), 251–265 | MR | Zbl

[13] R. Longo, “Minimal index and Braided Subfactors”, J. Funct. Anal., 109 (1992), 98–112 | DOI | MR | Zbl

[14] F. J. Murray, J. von Neumann, “On rings of operators”, Ann. Math., 37 (1936), 116–229 | DOI | MR | Zbl

[15] F. J. Murray, J. von Neumann, “On rings of operators, II”, Trans. Amer. Math. Soc., 41 (1937), 208–248 | DOI | MR | Zbl

[16] F. J. Murray, J. von Neumann, “On rings of operators, IV”, Ann. Math., 44 (1943), 716–808 | DOI | MR | Zbl

[17] A. A. Rakhimov, “Injective real $W^*$-factors of type $III_\lambda$, $0\lambda1$”, Funct. Anal. and its Applications, 3 (1997), 41–44 | MR | Zbl

[18] A. A. Rakhimov, Sh. M. Usmanov, “Outer conjugacy classes of automorphisms and antiautomorphisms of real and complex injective factors”, J. Funct. Anal., 144 (1997), 475–485 | DOI | MR | Zbl

[19] P. J. Stacey, “Real structure in $\sigma$-finite factors of type $III_\lambda$, where $0\lambda1$”, Proc. London Math. Soc. (3), 47:2 (1983), 275–284 | DOI | MR | Zbl