Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2010_1_3_a2, author = {V. I. Burenkov and A. Senouci and T. V. Tararykova}, title = {Hardy-type inequality for $0<p<1$ and hypodecreasing functions}, journal = {Eurasian mathematical journal}, pages = {27--42}, publisher = {mathdoc}, volume = {1}, number = {3}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a2/} }
V. I. Burenkov; A. Senouci; T. V. Tararykova. Hardy-type inequality for $0
[1] J. Bergh, V. Burenkov, L.-E. Persson, “Best constants in reversed Hardy's inequalities for quasi monotone functions”, Acta Sci. Math. (Szeged), 59:1–2 (1994), 221–239 | MR | Zbl
[2] J. Bergh, V. Burenkov, L.-E. Persson, “On some sharp reversed Hölder and Hardy-type inequalities”, Math. Nachr., 169 (1994), 19–29 | DOI | MR | Zbl
[3] V. I. Burenkov, Function spaces. Main integral inequalities related to $L_p$-spaces, Peoples' Friendship University, Moscow, 1989 (in Russian)
[4] Proc. Steklov Inst. Math., 194:4 (1993), 59–63 | MR | Zbl
[5] V. I. Burenkov, Sobolev spaces on domains, B. G. Teubner, Stuttgart, Leipzig, 1997 | MR
[6] V. I. Burenkov, A. Senouci, T. V. Tararykova, “Equivalent quasi-norm involving differences and moduli of continuity”, Complex Variables and Elliptic Equations, 55:8–10 (2010), 759–769 | DOI | MR | Zbl
[7] A. Senouci, T. V. Tararykova, “Hardy-type inequality for $0
1$”, Evraziiskii Matematicheskii Zhurnal, 2 (2007), 112–116