A~strong convergence theorem for two asymptotically nonexpansive mappings in a~strictly convex Banach space
Eurasian mathematical journal, Tome 1 (2010) no. 3, pp. 5-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

An iterative scheme containing two asymptotically nonexpansive mappings has been used in this paper to approximate common fixed points in a strictly convex Banach space. This improves and extends some known recent results to the case of two mappings.
@article{EMJ_2010_1_3_a0,
     author = {M. Abbas and S. H. Khan},
     title = {A~strong convergence theorem for two asymptotically nonexpansive mappings in a~strictly convex {Banach} space},
     journal = {Eurasian mathematical journal},
     pages = {5--10},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a0/}
}
TY  - JOUR
AU  - M. Abbas
AU  - S. H. Khan
TI  - A~strong convergence theorem for two asymptotically nonexpansive mappings in a~strictly convex Banach space
JO  - Eurasian mathematical journal
PY  - 2010
SP  - 5
EP  - 10
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a0/
LA  - en
ID  - EMJ_2010_1_3_a0
ER  - 
%0 Journal Article
%A M. Abbas
%A S. H. Khan
%T A~strong convergence theorem for two asymptotically nonexpansive mappings in a~strictly convex Banach space
%J Eurasian mathematical journal
%D 2010
%P 5-10
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a0/
%G en
%F EMJ_2010_1_3_a0
M. Abbas; S. H. Khan. A~strong convergence theorem for two asymptotically nonexpansive mappings in a~strictly convex Banach space. Eurasian mathematical journal, Tome 1 (2010) no. 3, pp. 5-10. http://geodesic.mathdoc.fr/item/EMJ_2010_1_3_a0/

[1] G. Das, J. P. Debata, “Fixed points of quasi-nonexpansive mappings”, Indian J. Pure. Appl. Math., 17 (1986), 1263–1269 | MR | Zbl

[2] K. Goebel, W. A. Kirk, “A fixed point theorem for asymptotically nonexpansive mappings”, Proc. Amer. Math. Soc., 35:1 (1972), 171–174 | DOI | MR | Zbl

[3] D. I. Igbokwe, “Approximation of fixed points of asymptotically demicontractive mappings in arbitrary Banach spaces”, J. Ineq. Pure and Appl. Math., 3:1 (2002), Article 3 Online: http://jipam.vu.edu.au/v3n1/043_01.html | MR

[4] S. H. Khan, W. Takahashi, “Iterative approximation of fixed points of asymptotically nonexpansive mappings with compact domains”, PanAmer. Math. J., 11:1 (2001), 19–24 | MR | Zbl

[5] W. A. Kirk, C. M. Yanez, S. S. Shin, “Asymptotically nonexpansive mappings”, Nonlinear Anal. TMA, 33:1 (1998), 1–12 | DOI | MR | Zbl

[6] J. Schu, “Weak and strong convergence to fixed points of asymptotically nonexpansive mappings”, Bull. Austral. Math. Soc., 43 (1991), 153–159 | DOI | MR | Zbl

[7] W. Takahashi, “Iterative methods for approximation of fixed points and thier applications”, J. Oper. Res. Soc. Jpn., 43:1 (2000), 87–108 | DOI | MR | Zbl

[8] W. Takahashi, G. E. Kim, “Approximating fixed points of nonexpansive mappings in Banach spaces”, Math. Japon., 48 (1998), 1–9 | MR | Zbl

[9] W. Takahashi, N. Tsukiyama, “Approximating fixed points of nonexpansive mappings with compact domains”, Comm. Appl. Nonlinear Anal., 7:4 (2000), 39–47 | MR | Zbl

[10] Y. Xu, “Ishikawa and Mann iteration process with errors for nonlinear strongly accretive operator equations”, J. Math. Anal. Appl., 224 (1998), 91–101 | DOI | MR | Zbl