Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2010_1_2_a7, author = {R. Oinarov and S. Y. Rakhimova}, title = {Weighted {Hardy} inequalities and their applications to oscillation theory of half-linear differential equations}, journal = {Eurasian mathematical journal}, pages = {110--121}, publisher = {mathdoc}, volume = {1}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a7/} }
TY - JOUR AU - R. Oinarov AU - S. Y. Rakhimova TI - Weighted Hardy inequalities and their applications to oscillation theory of half-linear differential equations JO - Eurasian mathematical journal PY - 2010 SP - 110 EP - 121 VL - 1 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a7/ LA - en ID - EMJ_2010_1_2_a7 ER -
%0 Journal Article %A R. Oinarov %A S. Y. Rakhimova %T Weighted Hardy inequalities and their applications to oscillation theory of half-linear differential equations %J Eurasian mathematical journal %D 2010 %P 110-121 %V 1 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a7/ %G en %F EMJ_2010_1_2_a7
R. Oinarov; S. Y. Rakhimova. Weighted Hardy inequalities and their applications to oscillation theory of half-linear differential equations. Eurasian mathematical journal, Tome 1 (2010) no. 2, pp. 110-121. http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a7/
[5] O. Dosly, P. Rehak, Half–linear differential equations, Math. Studies, 202, Elsevier Science, North-Holland, 2005 | MR | Zbl
[6] P. Drabek, A. Kufner, “Hardy inequality and properties of the quasilinear Sturm–Liouville problem”, Rend. Lincei Mat. Appl., 18 (2007), 125–138 | MR | Zbl
[7] A. A. Elbert, “Half-linear second order differential equation”, Colloq. Math. Soc. János Bolyai, 30 (1979), 153–180 | MR
[8] A. Gogatishvili, A. Kufner, L.-E. Persson, A. Wedestig, “An equivalence theorem for integral conditions related to Hardy's inequality”, Real Anal. Exchange, 29 (2003/2004), 867–880 | MR
[9] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge University Press, 1934
[10] A. Kufner, L. Maligranda, L.-E. Persson, The Hardy Inequality. About its History and some related results, Vydavatelsky Servis Publishing House, Pilsen, 2007 | MR | Zbl
[11] A. Kufner, L.-E. Persson, Weighted Inequalities of Hardy Type, Word Scientific, New Jersey, London, Singapore, Hong Kong, 2003 | MR | Zbl
[12] A. Kufner, L.-E. Persson, A. Wedestig, “A study of some constants characterizing the weighted Hardy inequality”, Orlicz Centenary Volume, Banach Center Publ., 64, Polish Acad. Sci., Warsaw, 2004, 135–146 | DOI | MR | Zbl
[13] V. M. Manakov, “On the best constant in weighted inequalities for Riemann–Liouville integrals”, Bull. London Math. Soc., 24 (1992), 442–448 | DOI | MR | Zbl
[14] J. D. Mirzov, “On some analogs of Sturm's and Kneser's theorems for non-linear systems”, J. Math. Anal. Appl., 53 (1976), 418–425 | DOI | MR | Zbl
[15] B. Muckenhoupt, “Hardy's inequality with weights”, Studia Math., 44 (1972), 31–38 | MR | Zbl
[16] K. Myrzataeva, R. Oinarov, “Nonoscillation of half–linear second order differential equation”, Math. Journal, 7:2 (2007), 72–82 (in Russian) | MR | Zbl
[17] R. Oinarov, “On weighted norm inequalities with three weights”, J. London Math. Soc. (2), 48:1 (1993), 103–116 | DOI | MR | Zbl
[18] B. Opic, A. Kufner, Hardy–type inequalities, Longman, Harlow, 1990 | MR | Zbl
[19] M. Otelbaev, Estimates of the spectrum of the Sturm–Liouville operator, Gylym, Alma-Ata, 1990 (in Russian) | Zbl
[20] L.-E. Persson, V. D. Stepanov, “Weighted integral inequalities with the geometric mean operator”, J. Inequal. Appl., 7:5 (2002), 727–746 | DOI | MR | Zbl
[21] G. A. Tomasseli, “A class of inequalities”, Boll. Un. Mat. Ital., 2 (1969), 622–631 | MR
[22] A. Wedestig, Weighted inequalities of Hardy–type and their limiting inequalities, PhD thesis, Luleå University of Technology, Department of Mathematics, 2003