On approximation of solutions of some semi-elliptic equations in $\mathbb{R}^n$
Eurasian mathematical journal, Tome 1 (2010) no. 2, pp. 59-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for some semi-elliptic equations the solution can be obtained as the limit when $\sigma\rightarrow\infty$, of the solution $u_\sigma$ of a boundary value problem in the generalised ball $B_{\sigma,\mu}$. Also an estimatie at infinity for the tempered fundamental solution is obtained.
@article{EMJ_2010_1_2_a3,
     author = {G. V. Dallakyan},
     title = {On approximation of solutions of some semi-elliptic equations in $\mathbb{R}^n$},
     journal = {Eurasian mathematical journal},
     pages = {59--75},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a3/}
}
TY  - JOUR
AU  - G. V. Dallakyan
TI  - On approximation of solutions of some semi-elliptic equations in $\mathbb{R}^n$
JO  - Eurasian mathematical journal
PY  - 2010
SP  - 59
EP  - 75
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a3/
LA  - en
ID  - EMJ_2010_1_2_a3
ER  - 
%0 Journal Article
%A G. V. Dallakyan
%T On approximation of solutions of some semi-elliptic equations in $\mathbb{R}^n$
%J Eurasian mathematical journal
%D 2010
%P 59-75
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a3/
%G en
%F EMJ_2010_1_2_a3
G. V. Dallakyan. On approximation of solutions of some semi-elliptic equations in $\mathbb{R}^n$. Eurasian mathematical journal, Tome 1 (2010) no. 2, pp. 59-75. http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a3/

[1] O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral representations of functions and embedding theorems, v. 1, John Wiley and Sons, New York, 1978 ; v. 2, 1979 | Zbl

[2] V. V. Grushin, “On fundamental solutions of hypoelliptic equations”, Uspekhi Math. Nauk, 16:4 (1961), 147–153 (in Russian) | MR | Zbl

[3] L. Hörmander, The analysis of PDO, v. I–II, Springer-Verlag, Berlin, 1983

[4] G. A. Karapetyan, G. V. Dallakyan, “On approximation of solutions of semi-elliptic equations in $\mathbb{R}^n$”, Journal of Contemporary Math., 34:4 (1999), 29–43 | MR | Zbl

[5] G. G. Kazaryan, “Comparison of powers of polynomials and their hypoellipticity”, Proceedings of Steklov Inst. Math., 150, 1979, 143–159 | MR | Zbl

[6] S. Mizohata, Theory of partial differential equations, Cambridge Univ. Press, London, 1973 | MR | Zbl

[7] L. Simon, “On elliptic differential equations in $\mathbb{R}^n$”, Annales, Sectio Mathematica, 27 (1983), 241–256 | MR

[8] S. V. Vladimirov, Equations of mathematical physics, Nauka, Moscow, 1967 (in Russian) | MR