Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2010_1_2_a3, author = {G. V. Dallakyan}, title = {On approximation of solutions of some semi-elliptic equations in $\mathbb{R}^n$}, journal = {Eurasian mathematical journal}, pages = {59--75}, publisher = {mathdoc}, volume = {1}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a3/} }
G. V. Dallakyan. On approximation of solutions of some semi-elliptic equations in $\mathbb{R}^n$. Eurasian mathematical journal, Tome 1 (2010) no. 2, pp. 59-75. http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a3/
[1] O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral representations of functions and embedding theorems, v. 1, John Wiley and Sons, New York, 1978 ; v. 2, 1979 | Zbl
[2] V. V. Grushin, “On fundamental solutions of hypoelliptic equations”, Uspekhi Math. Nauk, 16:4 (1961), 147–153 (in Russian) | MR | Zbl
[3] L. Hörmander, The analysis of PDO, v. I–II, Springer-Verlag, Berlin, 1983
[4] G. A. Karapetyan, G. V. Dallakyan, “On approximation of solutions of semi-elliptic equations in $\mathbb{R}^n$”, Journal of Contemporary Math., 34:4 (1999), 29–43 | MR | Zbl
[5] G. G. Kazaryan, “Comparison of powers of polynomials and their hypoellipticity”, Proceedings of Steklov Inst. Math., 150, 1979, 143–159 | MR | Zbl
[6] S. Mizohata, Theory of partial differential equations, Cambridge Univ. Press, London, 1973 | MR | Zbl
[7] L. Simon, “On elliptic differential equations in $\mathbb{R}^n$”, Annales, Sectio Mathematica, 27 (1983), 241–256 | MR
[8] S. V. Vladimirov, Equations of mathematical physics, Nauka, Moscow, 1967 (in Russian) | MR