Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2010_1_2_a0, author = {A. M. Akhtyamov and V. A. Sadovnichy and Ya. T. Sultanaev}, title = {Inverse problem for an operator pencil with nonseparated boundary conditions}, journal = {Eurasian mathematical journal}, pages = {5--16}, publisher = {mathdoc}, volume = {1}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a0/} }
TY - JOUR AU - A. M. Akhtyamov AU - V. A. Sadovnichy AU - Ya. T. Sultanaev TI - Inverse problem for an operator pencil with nonseparated boundary conditions JO - Eurasian mathematical journal PY - 2010 SP - 5 EP - 16 VL - 1 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a0/ LA - en ID - EMJ_2010_1_2_a0 ER -
%0 Journal Article %A A. M. Akhtyamov %A V. A. Sadovnichy %A Ya. T. Sultanaev %T Inverse problem for an operator pencil with nonseparated boundary conditions %J Eurasian mathematical journal %D 2010 %P 5-16 %V 1 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a0/ %G en %F EMJ_2010_1_2_a0
A. M. Akhtyamov; V. A. Sadovnichy; Ya. T. Sultanaev. Inverse problem for an operator pencil with nonseparated boundary conditions. Eurasian mathematical journal, Tome 1 (2010) no. 2, pp. 5-16. http://geodesic.mathdoc.fr/item/EMJ_2010_1_2_a0/
[1] V. A. Ambarzumijan, “Uber eine Frage der Eigenwerttheorie”, Zeitshrift fur Physik, 53 (1929), 690–695 | DOI
[2] P. A. Binding, H. Volkmer, “Inverse Oscillation Theory for Sturm–Liouville Problems with Non-separated Boundary Conditions”, Inverse Probl., 23:1 (2007), 343–356 | DOI | MR
[3] G. Borg, “Eine Umkehrung der Sturm Liouvilleschen Eigenwertanfgabe. Bestimmung der Differentialgleichung durch die Eigenwarte”, Acta Math., 78:1 (1946), 1–96 | DOI | MR | Zbl
[4] S. A. Buterin, V. A. Yurko, “The Inverse Spectral Problem for Pencils of Differential Operators on a Finite Interval”, Vestn. Bashkir. Univ., 4 (2006), 8–12 (in Russian)
[5] G. M. Gubreev, V. N. Pivovarchik, “Spectral Analysis of Redzhe Problem with Parameters”, Funkts. Anal. Ego Prilozh., 31:1 (1997), 70–74 (in Russian) | DOI | MR | Zbl
[6] I. M. Guseinov, I. M. Nabiev, “The Inverse Spectral Problem for Pencils of Differential Operators”, Sb. Math., 198:11 (2007), 1579–1598 (in Russian) | DOI | MR | Zbl
[7] B. Ya. Levin, Distribution of Zeros of Entire Functions, Amer. Math. Soc., Providence, 1980 | MR
[8] M. A. Naimark, Linear Differential Operators, Ungar, New York, 1967 | Zbl
[9] O. A. Plaksina, “Inverse Problems of Spectral Analysis for Sturm–Liouville Operators with Nonseparated Boundary Conditions I”, Math. Ussr. Sb., 59:1 (1988), 1–23 (in Russian) | DOI | MR | Zbl
[10] O. A. Plaksina, “Inverse Problems of Spectral Analysis for Sturm–Liouville Operators with Nonseparated Boundary Conditions II”, Math. Ussr. Sb., 64:1 (1989), 141–160 (in Russian) | DOI | MR
[11] V. A. Sadovnichii, Ya. T. Sultanaev, A. M. Akhtyamov, “Analogues of Borg's Uniqueness Theorem in the Case of Nonseparated Boundary Conditions”, Doklady Mathematics, 60:1 (1999), 115–117 (in Russian) | MR
[12] V. A. Sadovnichii, Ya. T. Sultanaev, A. M. Akhtyamov, “Well-Posedness of the Inverse Sturm-Liouville Problem with Undecomposable Boundary Conditions”, Doklady Mathematical Sciences, 69:2 (2004), 105–107 (in Russian) | MR
[13] V. A. Sadovnichii, Ya.T. Sultanaev, A.M. Akhtyamov, “Inverse Sturm–Liouville Problems with Generalized Periodic Boundary Conditions”, Differential Equations, 45:4 (2009), 526–538 (in Russian) | DOI | MR | Zbl
[14] V. A. Sadovnichii, Ya. T. Sultanaev, A. M. Akhtyamov, Inverse Sturm–Liouville Problems with Nonseparated Boundary Conditions, MSU, Moscow, 2009 (in Russian)
[15] Van der Mee, V. N. Pivovarchik, “A Sturm–Liouville Inverse Spectral Problem with Boundary Conditions Depending on the Spectral Parameter”, Funkts. Anal. Prilozh. Ego Prilozh., 36:4 (2002), 74–77 (in Russian) | DOI | MR | Zbl
[16] V. A. Yurko, Inverse Spectral Problems for Linear Differential Operators and their Applications, Gordon and Breach, New York, 2000 | MR | Zbl
[17] V. A. Yurko, “An Inverse Problem for Differential Operator Pencils”, Sb. Math., 191:10 (2000), 1561–1586 (in Russian) | DOI | MR | Zbl