Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2010_1_1_a7, author = {V. Kokilashvili and A. Meskhi and M. Sarwar}, title = {One and two weight estimates for one-sided operators in $L^{p(\cdot)}$ spaces}, journal = {Eurasian mathematical journal}, pages = {73--110}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a7/} }
TY - JOUR AU - V. Kokilashvili AU - A. Meskhi AU - M. Sarwar TI - One and two weight estimates for one-sided operators in $L^{p(\cdot)}$ spaces JO - Eurasian mathematical journal PY - 2010 SP - 73 EP - 110 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a7/ LA - en ID - EMJ_2010_1_1_a7 ER -
V. Kokilashvili; A. Meskhi; M. Sarwar. One and two weight estimates for one-sided operators in $L^{p(\cdot)}$ spaces. Eurasian mathematical journal, Tome 1 (2010) no. 1, pp. 73-110. http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a7/
[1] K. Andersen, E. Sawyer, “Weighted norm inequalities for the Riemann–Liouville and Weyl fractional operators”, Trans. Amer. Math. Soc., 308:2 (1988), 547–558 | DOI | MR | Zbl
[2] U. Ashraf, V. Kokilashvili, A. Meskhi, “Weight characterization of the trace inequality for the generalized Riemann–Liouville transform in $L^{p(x)}$ spaces”, Math. Ineq. Appl. (to appear)
[3] D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, “The maximal function on variable $L^p$ spaces”, Ann. Acad. Sci. Fenn. Math., 28:1 (2003), 223–238 | MR | Zbl
[4] L. Diening, “Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$”, Math. Ineq. Appl., 7:2 (2004), 245–253 | MR | Zbl
[5] L. Diening, “Riesz potentials and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(x)}$ and $W^{k,p(x)}$”, Math. Nachr., 268 (2004), 31–43 | DOI | MR | Zbl
[6] L. Diening, “Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces”, Bull. Sci. Math., 129:8 (2005), 657–700 | DOI | MR | Zbl
[7] L. Diening, P. Hästö, Muckenhoupt weights in variable exponent spaces, Preprint, 2008
[8] L. Diening, S. Samko, “Hardy inequality in variable exponent Lebesgue spaces”, Frac. Calc. Appl. Anal., 10:1 (2007), 1–18 | MR | Zbl
[9] D. E. Edmunds, V. Kokilashvili, A. Meskhi, Bounded and compact integral operators, Mathematics and its Applications, 543, Kluwer Academic Publishers, Dordrecht, 2002 | MR | Zbl
[10] D. E. Edmunds, V. Kokilashvili, A. Meskhi, “A trace inequality for generalized potentials in Lebesgue spaces with variable exponent”, J. Funct. Spaces Appl., 2:1 (2004), 55–69 | DOI | MR | Zbl
[11] D. E. Edmunds, V. Kokilashvili, A. Meskhi, “On the boundedness and compactness of the weighted Hardy operators in $L^{p(x)}$ spaces”, Georgian Math. J., 12:1 (2005), 27–44 | MR | Zbl
[12] D. E. Edmunds, V. Kokilashvili, A. Meskhi, “Two-weight estimates in $L^{p(x)}$ spaces with applications to Fourier series”, Houston J. Math., 35:2 (2009), 665–689 | MR | Zbl
[13] D. E. Edmunds, V. Kokilashvili, A. Meskhi, “One-sided operators in $L^{p(x)}$ spaces”, Math. Nachr., 281:11 (2008), 1525–1548 | DOI | MR | Zbl
[14] D. E. Edmunds, A. Meskhi, “Potential-type operators in $L^{p(x)}$ spaces”, Z. Anal. Anwend., 21 (2002), 681–690 | DOI | MR | Zbl
[15] D. E. Edmunds, V. Kokilashvili, A. Meskhi, “On the boundedness and compactness of the weighted Hardy operators in $L^{p(x)}$ spaces”, Georgian Math. J., 12:1 (2005), 27–44 | MR | Zbl
[16] I. Genebashvili, A. Gogatishvili, V. Kokilashvili, M. Krbec, Weight theory for integral transforms on spaces of homogeneous type, Pitman Monographs and Surveys in Pure and Applied Mathematics, 92, Longman, Harlow, 1998 | MR | Zbl
[17] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge Univ. Press, 1934
[18] L. Hörmander, “$L^p$ estimates for (pluri-) subharmonic functions”, Math. Scand, 20 (1967), 65–78 | MR | Zbl
[19] M. I. A. Canestro, P. O. Salvador, “Weighted weak type inequalities with variable exponents for Hardy and maximal operators”, Proc. Japan Acad. (A), 82 (2006), 126–130 | DOI | MR | Zbl
[20] V. M. Kokilashvili, “On Hardy's inequalities in weighted spaces”, Soobsch. Akad. Nauk Gruz. SSR, 96 (1979), 37–40 (in Russian) | MR | Zbl
[21] V. Kokilashvili, “On a progress in the theory of integral operators in weighted Banach function spaces”, Function Spaces, Differential Operators and Nonlinear Analysis, Proceedings of the Conference held in Milovy (Bohemian-Moravian Uplands, May 28–June 2), Math. Inst. Acad. Sci. of Czech Republic, Prague, 2004
[22] V. Kokilashvili, A. Meskhi, “On a trace inequality for one-sided potentials and applications to the solvability of nonlinear integral equations”, Georgian Math. J., 8:3 (2001), 521–536 | MR | Zbl
[23] V. Kokilashvili, A. Meskhi, “On two-weight criteria for maximal function in $L^{p(x)}$ spaces defined on an interval”, Proc. A. Razmadze Math. Inst., 145, 2007, 100–102 | MR | Zbl
[24] V. Kokilasvili, A. Meskhi, “Weighted criteria for generalized fractional maximal functions and potentials in Lebesgue spaces with variable exponent”, Integ. Trans. Spec. Func., 18:9 (2007), 609–628 | DOI | MR
[25] V. Kokilasvili, A. Meskhi, “On the maximal and Fourier operators in weighted Lebesgue spaces with variable exponent”, Proc. A. Razmadze Math. Inst., 146, 2008, 120–123 | MR
[26] V. Kokilashvili, S. Samko, “On Sobolev theorem for Riesz-type potentials in Lebesgue spaces with variable exponent”, Z. Anal. Anwendungen, 22:4 (2003), 899–910 | DOI | MR
[27] V. Kokilashvili, S. Samko, “Singular integrals in weighted Lebesgue spaces with variable exponent”, Georgian Math. J., 10:1 (2003), 145–156 | MR | Zbl
[28] V. Kokilashvili, S. Samko, “Maximal and fractional operators in weighted $L^{p(x)}$ spaces”, Rev. Mat. Iberoamericana, 20:2 (2004), 493–515 | DOI | MR | Zbl
[29] V. Kokilashvili, S. Samko, “Boundedness of maximal operators and potential operators on Carleson curves in Lebesgue spaces with variable exponent”, Acta Mathematica Sinica, 2008 (to appear) | DOI | MR
[30] V. Kokilashvili, S. Samko, “The maximal operator in weighted variable spaces on metric measure spaces”, Proc. A. Razmadze Math. Inst., 144, 2007, 137–144 | MR | Zbl
[31] V. Kokilashvili, S. Samko, “Operators of harmonis analysis in weighted spaces with non-standard growth”, J. Math. Anal. Appl., 2008 (to appear) | MR
[32] T. S. Kopaliani, “Infimal convolution and Muckenhoupt $A_{p(\cdot)}$ condition in variable $L^p$ spaces”, Arch. Math., 89 (2007), 185–192 | DOI | MR | Zbl
[33] O. Kovácik, J. Rákosník, “On spaces $L^{p(x)}$ and $W^{k,p(x)}$”, Czechoslovak Math. J., 41:4 (1991), 592–618 | MR | Zbl
[34] M. Lorente, “A characterization of two-weight norm inequalities for one-sided operators of fractional type”, Canad. J. Math., 49 (1997), 839–848 | DOI | MR
[35] F. J. Martin-Reyes, P. Ortega Salvador, A. de la Torre, “Weighted inequalities for one-sided maximal functions”, Trans. Amer. Math. Soc., 319 (1990), 514–534 | DOI | MR
[36] F. J. Martin-Reyes, A. de la Torre, “Two-weight norm inequalities for fractional one-sided maximal operators”, Proc. Amer. Math. Soc., 117 (1993), 483–489 | DOI | MR | Zbl
[37] V. G. Maz'ya, Sobolev spaces, Springer Verlag, Berlin, Heidelberg, 1985 | MR | Zbl
[38] A. Meskhi, “Solution of some weight problems for Riemann–Liouville and Weyl operators”, Georgian Math. J., 5:6 (1998), 565–574 | DOI | MR | Zbl
[39] Sh. Ombrosi, “Weak weighted inequalities for a dyadic one-sided maximal functions in $\mathbb{R}^n$”, Proc. Amer. Math. Soc., 133 (2005), 1769–1775 | DOI | MR | Zbl
[40] D. V. Prokhorov, “On the boundedness of a class of integral operators”, J. London Math. Soc., 61:2 (2000), 617–628 | DOI | MR | Zbl
[41] E. T. Sawyer, “Weighted inequalities for one-sided Hardy–Littlewood maximal functions”, Trans. Amer. Math. Soc., 297 (1986), 53–61 | DOI | MR | Zbl
[42] S. Samko, “Convolution type operators in $L^{p(x)}$”, Integral Transf. and Spec. Funct., 7:1–2 (1998), 123–144 | DOI | MR | Zbl
[43] S. Samko, “Convolution type operators in $L^{p(x)}({\mathbb{R}}^n)$”, Integr. Transf. and Spec. Funct., 7:3–4 (1998), 261–284 | DOI | MR | Zbl
[44] S. Samko, “On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators”, Integral Transforms Spec. Funct., 16:5–6 (2005), 461–482 | DOI | MR | Zbl
[45] S. Samko, E. Shargorodsky, B. Vakulov, “Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators II”, J. Math. Anal. Appl., 325:1 (2007), 745–751 | DOI | MR | Zbl
[46] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives. Theory and applications, Gordon and Breach Sci. Publishers, London, New York, 1993 | MR | Zbl
[47] S. Samko, B. Vakulov, “Weighted Sobolev theorem with variable exponent”, J. Math. Anal. Appl., 310 (2005), 229–246 | DOI | MR | Zbl
[48] E. Sawyer, “Weighted inequalities for the one-sided Hardy–Littlewood maximal functions”, Trans. Amer. Math. Soc., 297 (1986), 53–61 | DOI | MR | Zbl
[49] E. T. Sawyer, “Weighted norm inequalities for fractional maximal operators”, Seminar on Harmonic Analysis (Montreal, Que., 1980), CMS Conf. Proc., 1, Amer. Math. Soc., Providence, R.I., 1981, 283–309 | MR
[50] E. T. Sawyer, R. L. Wheeden, “Carleson conditions for the Poisson integral”, Indiana Univ. Math. J., 40:2 (1991), 639–676 | DOI | MR | Zbl
[51] J. O. Strömberg, A. Torchinsky, Weighted Hardy spaces, Lecture Notes in Math., 1381, Springer Verlag, Berlin, 1989 | MR | Zbl
[52] K. Tachizawa, “On weighted dyadic Carleson's inequalities”, J. Ineq. Appl., 6:4 (2001), 415–433 | DOI | MR | Zbl
[53] I. E. Verbitsky, “Weighted norm inequalities for maximal operators and Pisier's theorem on factorization through $L^{p\infty}$”, Integral Equations and Operator Theory, 15:1 (1992), 124–153 | DOI | MR | Zbl