One and two weight estimates for one-sided operators in $L^{p(\cdot)}$ spaces
Eurasian mathematical journal, Tome 1 (2010) no. 1, pp. 73-110

Voir la notice de l'article provenant de la source Math-Net.Ru

Various type weighted norm estimates for one-sided maximal functions and potentials are established in variable exponent Lebesgue spaces $L^{p(\cdot)}$. In particular, sufficient conditions (in some cases necessary and sufficient conditions) governing one and two weight inequalities for these operators are derived. Among other results generalizations of the Hardy–Littlewood, Fefferman–Stein and trace inequalities are given in $L^{p(\cdot)}$ spaces.
@article{EMJ_2010_1_1_a7,
     author = {V. Kokilashvili and A. Meskhi and M. Sarwar},
     title = {One and two weight estimates for one-sided operators in $L^{p(\cdot)}$ spaces},
     journal = {Eurasian mathematical journal},
     pages = {73--110},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a7/}
}
TY  - JOUR
AU  - V. Kokilashvili
AU  - A. Meskhi
AU  - M. Sarwar
TI  - One and two weight estimates for one-sided operators in $L^{p(\cdot)}$ spaces
JO  - Eurasian mathematical journal
PY  - 2010
SP  - 73
EP  - 110
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a7/
LA  - en
ID  - EMJ_2010_1_1_a7
ER  - 
%0 Journal Article
%A V. Kokilashvili
%A A. Meskhi
%A M. Sarwar
%T One and two weight estimates for one-sided operators in $L^{p(\cdot)}$ spaces
%J Eurasian mathematical journal
%D 2010
%P 73-110
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a7/
%G en
%F EMJ_2010_1_1_a7
V. Kokilashvili; A. Meskhi; M. Sarwar. One and two weight estimates for one-sided operators in $L^{p(\cdot)}$ spaces. Eurasian mathematical journal, Tome 1 (2010) no. 1, pp. 73-110. http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a7/