Equiconvergence theorems for Sturm--Lioville operators with singular potentials (rate of equiconvergence in $W_2^\theta$-norm)
Eurasian mathematical journal, Tome 1 (2010) no. 1, pp. 137-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Sturm–Liouville operator $Ly=l(y)=-\dfrac{d^2y}{dx^2}+q(x)y$ with Dirichlet boundary conditions $y(0)=y(\pi)=0$ in the space $L_2[0,\pi]$. We assume that the potential has the form $q(x)=u'(x)$, where $u\in W_2^{\theta}[0,\pi]$ with $0\theta1/2$. Here $W_2^{\theta}[0,\pi]=[L_2,W_2^1]_\theta$ is the Sobolev space. We consider the problem of equiconvergence in $W_2^\theta[0,\pi]$-norm of two expansions of a function $f\in L_2[0,\pi]$. The first one is constructed using the system of the eigenfunctions and associated functions of the operator $L$. The second one is the Fourier expansion in the series of sines. We show that the equiconvergence holds for any function $f$ in the space $L_2[0,\pi]$.
@article{EMJ_2010_1_1_a10,
     author = {I. V. Sadovnichaya},
     title = {Equiconvergence theorems for {Sturm--Lioville} operators with singular potentials (rate of equiconvergence in $W_2^\theta$-norm)},
     journal = {Eurasian mathematical journal},
     pages = {137--146},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a10/}
}
TY  - JOUR
AU  - I. V. Sadovnichaya
TI  - Equiconvergence theorems for Sturm--Lioville operators with singular potentials (rate of equiconvergence in $W_2^\theta$-norm)
JO  - Eurasian mathematical journal
PY  - 2010
SP  - 137
EP  - 146
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a10/
LA  - en
ID  - EMJ_2010_1_1_a10
ER  - 
%0 Journal Article
%A I. V. Sadovnichaya
%T Equiconvergence theorems for Sturm--Lioville operators with singular potentials (rate of equiconvergence in $W_2^\theta$-norm)
%J Eurasian mathematical journal
%D 2010
%P 137-146
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a10/
%G en
%F EMJ_2010_1_1_a10
I. V. Sadovnichaya. Equiconvergence theorems for Sturm--Lioville operators with singular potentials (rate of equiconvergence in $W_2^\theta$-norm). Eurasian mathematical journal, Tome 1 (2010) no. 1, pp. 137-146. http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a10/

[1] A. M. Gomilko, G. V. Radzievskii, “The equiconvergence of the series in the eigenfunctions of ordinary functional-differential operators”, Doklady Ross. Akad. Nauk. Matematika, 316:2 (1991), 265–269 (in Russian) | MR

[2] V. A. Il'in, “Equiconvergence of the trigonometric series and the expansion in eigenfunctions of the one-dimensional Shrödinger operator with the complex-valued $L_1$-potential”, Diff. Uravn., 27:4 (1991), 577–597 (in Russian) | MR | Zbl

[3] T. Kato, Perturbation theory for linear operators, Springer Verlag, Berlin, Heidelberg, New York, 1966 | MR

[4] V. A. Marchenko, Sturm–Liouville operators and their applications, Naukova dumka, Kiev, 1977 (in Russian) | MR

[5] I. V. Sadovnichaya, “On the rate of equiconvergence of expansions in the trigonometric series and in the eigenfunctions of Sturm–Liouville operator with the distributional potential”, Diff. Uravn., 44:5 (2008), 656–664 (in Russian) | MR | Zbl

[6] A. M. Savchuk, Uniform asymptotic formulae for eigenfunctions of Sturm–Liouville operators with singular potentials, 2008, arXiv: 0801.1950

[7] A. M. Savchuk, A. A. Shkalikov, “Sturm–Liouville operators with singular potentials”, Mat. zametki, 66:6 (1999), 897–912 (in Russian) | DOI | MR | Zbl

[8] A. M. Savchuk, A. A. Shkalikov, “Sturm–Liouville operators with distribution potentials”, Trudy Moscow Mathematical Society, 64, 2003, 159–219 (in Russian) | MR

[9] A. M. Savchuk, A. A. Shkalikov, “On eigenvalues of Sturm–Liouville operators with potentials from Sobolev spaces”, Mat. zametki, 80:6 (2006), 864–884 (in Russian) | DOI | MR | Zbl

[10] V. A. Vinokurov, V. A. Sadovnichy, “The uniform equiconvergence of the Fourier series in the eigenfunctions of the first boundary value problem and of the trigonometric Fourier series”, Doklady Ross. Akad. Nauk. Matematika, 380:6 (2001), 731–735 (in Russian)) | MR | Zbl