Equiconvergence theorems for Sturm--Lioville operators with singular potentials (rate of equiconvergence in $W_2^\theta$-norm)
Eurasian mathematical journal, Tome 1 (2010) no. 1, pp. 137-146
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the Sturm–Liouville operator $Ly=l(y)=-\dfrac{d^2y}{dx^2}+q(x)y$ with Dirichlet boundary conditions $y(0)=y(\pi)=0$ in the space $L_2[0,\pi]$. We assume that the potential has the form $q(x)=u'(x)$, where $u\in W_2^{\theta}[0,\pi]$ with $0\theta1/2$. Here $W_2^{\theta}[0,\pi]=[L_2,W_2^1]_\theta$ is the Sobolev space. We consider the problem of equiconvergence in $W_2^\theta[0,\pi]$-norm of two expansions of a function $f\in L_2[0,\pi]$. The first one is constructed using the system of the eigenfunctions and associated functions of the operator $L$. The second one is the Fourier expansion in the series of sines. We show that the equiconvergence holds for any function $f$ in the space $L_2[0,\pi]$.
@article{EMJ_2010_1_1_a10,
author = {I. V. Sadovnichaya},
title = {Equiconvergence theorems for {Sturm--Lioville} operators with singular potentials (rate of equiconvergence in $W_2^\theta$-norm)},
journal = {Eurasian mathematical journal},
pages = {137--146},
publisher = {mathdoc},
volume = {1},
number = {1},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a10/}
}
TY - JOUR AU - I. V. Sadovnichaya TI - Equiconvergence theorems for Sturm--Lioville operators with singular potentials (rate of equiconvergence in $W_2^\theta$-norm) JO - Eurasian mathematical journal PY - 2010 SP - 137 EP - 146 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a10/ LA - en ID - EMJ_2010_1_1_a10 ER -
%0 Journal Article %A I. V. Sadovnichaya %T Equiconvergence theorems for Sturm--Lioville operators with singular potentials (rate of equiconvergence in $W_2^\theta$-norm) %J Eurasian mathematical journal %D 2010 %P 137-146 %V 1 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a10/ %G en %F EMJ_2010_1_1_a10
I. V. Sadovnichaya. Equiconvergence theorems for Sturm--Lioville operators with singular potentials (rate of equiconvergence in $W_2^\theta$-norm). Eurasian mathematical journal, Tome 1 (2010) no. 1, pp. 137-146. http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a10/