Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2010_1_1_a10, author = {I. V. Sadovnichaya}, title = {Equiconvergence theorems for {Sturm--Lioville} operators with singular potentials (rate of equiconvergence in $W_2^\theta$-norm)}, journal = {Eurasian mathematical journal}, pages = {137--146}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a10/} }
TY - JOUR AU - I. V. Sadovnichaya TI - Equiconvergence theorems for Sturm--Lioville operators with singular potentials (rate of equiconvergence in $W_2^\theta$-norm) JO - Eurasian mathematical journal PY - 2010 SP - 137 EP - 146 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a10/ LA - en ID - EMJ_2010_1_1_a10 ER -
%0 Journal Article %A I. V. Sadovnichaya %T Equiconvergence theorems for Sturm--Lioville operators with singular potentials (rate of equiconvergence in $W_2^\theta$-norm) %J Eurasian mathematical journal %D 2010 %P 137-146 %V 1 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a10/ %G en %F EMJ_2010_1_1_a10
I. V. Sadovnichaya. Equiconvergence theorems for Sturm--Lioville operators with singular potentials (rate of equiconvergence in $W_2^\theta$-norm). Eurasian mathematical journal, Tome 1 (2010) no. 1, pp. 137-146. http://geodesic.mathdoc.fr/item/EMJ_2010_1_1_a10/
[1] A. M. Gomilko, G. V. Radzievskii, “The equiconvergence of the series in the eigenfunctions of ordinary functional-differential operators”, Doklady Ross. Akad. Nauk. Matematika, 316:2 (1991), 265–269 (in Russian) | MR
[2] V. A. Il'in, “Equiconvergence of the trigonometric series and the expansion in eigenfunctions of the one-dimensional Shrödinger operator with the complex-valued $L_1$-potential”, Diff. Uravn., 27:4 (1991), 577–597 (in Russian) | MR | Zbl
[3] T. Kato, Perturbation theory for linear operators, Springer Verlag, Berlin, Heidelberg, New York, 1966 | MR
[4] V. A. Marchenko, Sturm–Liouville operators and their applications, Naukova dumka, Kiev, 1977 (in Russian) | MR
[5] I. V. Sadovnichaya, “On the rate of equiconvergence of expansions in the trigonometric series and in the eigenfunctions of Sturm–Liouville operator with the distributional potential”, Diff. Uravn., 44:5 (2008), 656–664 (in Russian) | MR | Zbl
[6] A. M. Savchuk, Uniform asymptotic formulae for eigenfunctions of Sturm–Liouville operators with singular potentials, 2008, arXiv: 0801.1950
[7] A. M. Savchuk, A. A. Shkalikov, “Sturm–Liouville operators with singular potentials”, Mat. zametki, 66:6 (1999), 897–912 (in Russian) | DOI | MR | Zbl
[8] A. M. Savchuk, A. A. Shkalikov, “Sturm–Liouville operators with distribution potentials”, Trudy Moscow Mathematical Society, 64, 2003, 159–219 (in Russian) | MR
[9] A. M. Savchuk, A. A. Shkalikov, “On eigenvalues of Sturm–Liouville operators with potentials from Sobolev spaces”, Mat. zametki, 80:6 (2006), 864–884 (in Russian) | DOI | MR | Zbl
[10] V. A. Vinokurov, V. A. Sadovnichy, “The uniform equiconvergence of the Fourier series in the eigenfunctions of the first boundary value problem and of the trigonometric Fourier series”, Doklady Ross. Akad. Nauk. Matematika, 380:6 (2001), 731–735 (in Russian)) | MR | Zbl