A continuation problem for electrodynamic equations
Eurasian journal of mathematical and computer applications, Tome 7 (2019) no. 4, pp. 100-114
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the problem of continuation of a solution of electrodynamic equations from the boundary of the half-space $\mathbb{R}_+^3=\{x\in\mathbb{R}^3\mid x_3>0\}$ inside. The main result is a unique local solvability and uniqueness theorem in the class of functions that are analytic with respect to space variables.
Keywords:
Maxwell equations, Cauchy problem, uniqueness, solvability.
@article{EJMCA_2019_7_4_a6,
author = {V. G. Romanov},
title = {A continuation problem for electrodynamic equations},
journal = {Eurasian journal of mathematical and computer applications},
pages = {100--114},
year = {2019},
volume = {7},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EJMCA_2019_7_4_a6/}
}
V. G. Romanov. A continuation problem for electrodynamic equations. Eurasian journal of mathematical and computer applications, Tome 7 (2019) no. 4, pp. 100-114. http://geodesic.mathdoc.fr/item/EJMCA_2019_7_4_a6/