Recovering the timewise reaction coefficient for a two-dimensional free boundary problem
Eurasian journal of mathematical and computer applications, Tome 7 (2019) no. 4, pp. 66-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

The reconstruction of the timewise reaction and free boundary coefficients in the heat equation from an additional Stefan-type and mass/energy measurements data is considered. This inverse formulation results in a local uniquely solvable problem. The two-dimensional inverse problem is discretized using an alternating direction explicit method. The resulting constrained regularized optimization problem is minimized iteratively by employing a MATLAB toolbox subroutine.
Keywords: Inverse coefficient identification problem, Free boundary, Two-dimensional parabolic equation, Tikhonov regularization, Nonlinear optimization.
@article{EJMCA_2019_7_4_a4,
     author = {M. J. Huntul},
     title = {Recovering the timewise reaction coefficient for a two-dimensional free boundary problem},
     journal = {Eurasian journal of mathematical and computer applications},
     pages = {66--85},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJMCA_2019_7_4_a4/}
}
TY  - JOUR
AU  - M. J. Huntul
TI  - Recovering the timewise reaction coefficient for a two-dimensional free boundary problem
JO  - Eurasian journal of mathematical and computer applications
PY  - 2019
SP  - 66
EP  - 85
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJMCA_2019_7_4_a4/
LA  - en
ID  - EJMCA_2019_7_4_a4
ER  - 
%0 Journal Article
%A M. J. Huntul
%T Recovering the timewise reaction coefficient for a two-dimensional free boundary problem
%J Eurasian journal of mathematical and computer applications
%D 2019
%P 66-85
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJMCA_2019_7_4_a4/
%G en
%F EJMCA_2019_7_4_a4
M. J. Huntul. Recovering the timewise reaction coefficient for a two-dimensional free boundary problem. Eurasian journal of mathematical and computer applications, Tome 7 (2019) no. 4, pp. 66-85. http://geodesic.mathdoc.fr/item/EJMCA_2019_7_4_a4/