On a homogeneous parabolic problem in an infinite angular domain
Eurasian journal of mathematical and computer applications, Tome 7 (2019) no. 1, pp. 38-52
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study a homogeneous boundary value problem for the heat equation in a noncylindrical domain with the special boundary conditions. The problem under consideration is useful for solving the single-phase Stefan problem. It has been shown that this homogeneous problem has a nontrivial solution up to constant factor in the weight class of essentially bounded functions. A class of functions in which this problem has only a trivial solution is found. Thus, a class of functions in which the corresponding inhomogeneous problem is uniquely solvable is defined.
Keywords:
Stefan’s problem, heat equation, noncylindrical domain.
@article{EJMCA_2019_7_1_a2,
author = {M. T. Jenaliyev and M. I. Ramazanov and S. A. Iskakov},
title = {On a homogeneous parabolic problem in an infinite angular domain},
journal = {Eurasian journal of mathematical and computer applications},
pages = {38--52},
publisher = {mathdoc},
volume = {7},
number = {1},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EJMCA_2019_7_1_a2/}
}
TY - JOUR AU - M. T. Jenaliyev AU - M. I. Ramazanov AU - S. A. Iskakov TI - On a homogeneous parabolic problem in an infinite angular domain JO - Eurasian journal of mathematical and computer applications PY - 2019 SP - 38 EP - 52 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EJMCA_2019_7_1_a2/ LA - en ID - EJMCA_2019_7_1_a2 ER -
%0 Journal Article %A M. T. Jenaliyev %A M. I. Ramazanov %A S. A. Iskakov %T On a homogeneous parabolic problem in an infinite angular domain %J Eurasian journal of mathematical and computer applications %D 2019 %P 38-52 %V 7 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/EJMCA_2019_7_1_a2/ %G en %F EJMCA_2019_7_1_a2
M. T. Jenaliyev; M. I. Ramazanov; S. A. Iskakov. On a homogeneous parabolic problem in an infinite angular domain. Eurasian journal of mathematical and computer applications, Tome 7 (2019) no. 1, pp. 38-52. http://geodesic.mathdoc.fr/item/EJMCA_2019_7_1_a2/