On improving an error estimate for a nonlinear projective regularization method when solving an inverse boundary value problem
Eurasian journal of mathematical and computer applications, Tome 6 (2018) no. 3, pp. 53-74
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper suggests a solution to a combined initial boundary value problem for the heat equation, in which, the heating takes place in the interval from $0$ to $T$, and then, starting with $T$, the free heat exchange with the surrounding medium occurs. Such a statement is an adequate mathematical model describing the temperature field of a heated object. The error estimation of the approximate solution to the problem is obtained in terms of the modulus of continuity of the inverse operator.
Keywords:
error estimation, modulus of continuity, Fourier transform, ill-posed problem.
@article{EJMCA_2018_6_3_a3,
author = {V. P. Tanana and A. I. Sidikova},
title = {On improving an error estimate for a nonlinear projective regularization method when solving an inverse boundary value problem},
journal = {Eurasian journal of mathematical and computer applications},
pages = {53--74},
publisher = {mathdoc},
volume = {6},
number = {3},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EJMCA_2018_6_3_a3/}
}
TY - JOUR AU - V. P. Tanana AU - A. I. Sidikova TI - On improving an error estimate for a nonlinear projective regularization method when solving an inverse boundary value problem JO - Eurasian journal of mathematical and computer applications PY - 2018 SP - 53 EP - 74 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EJMCA_2018_6_3_a3/ LA - en ID - EJMCA_2018_6_3_a3 ER -
%0 Journal Article %A V. P. Tanana %A A. I. Sidikova %T On improving an error estimate for a nonlinear projective regularization method when solving an inverse boundary value problem %J Eurasian journal of mathematical and computer applications %D 2018 %P 53-74 %V 6 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/EJMCA_2018_6_3_a3/ %G en %F EJMCA_2018_6_3_a3
V. P. Tanana; A. I. Sidikova. On improving an error estimate for a nonlinear projective regularization method when solving an inverse boundary value problem. Eurasian journal of mathematical and computer applications, Tome 6 (2018) no. 3, pp. 53-74. http://geodesic.mathdoc.fr/item/EJMCA_2018_6_3_a3/