Study of regularized methods of gradient type for irregular operator equations
Eurasian journal of mathematical and computer applications, Tome 6 (2018) no. 2, pp. 34-42
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper, we give some estimates for convergence rates of the iteratively regularized steepest descent and minimal error methods.
Keywords:
Regularization, ill-posed problems, iterative methods, nonlinear equations.
@article{EJMCA_2018_6_2_a2,
author = {P. A. Chistyakov},
title = {Study of regularized methods of gradient type for irregular operator equations},
journal = {Eurasian journal of mathematical and computer applications},
pages = {34--42},
year = {2018},
volume = {6},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EJMCA_2018_6_2_a2/}
}
TY - JOUR AU - P. A. Chistyakov TI - Study of regularized methods of gradient type for irregular operator equations JO - Eurasian journal of mathematical and computer applications PY - 2018 SP - 34 EP - 42 VL - 6 IS - 2 UR - http://geodesic.mathdoc.fr/item/EJMCA_2018_6_2_a2/ LA - en ID - EJMCA_2018_6_2_a2 ER -
P. A. Chistyakov. Study of regularized methods of gradient type for irregular operator equations. Eurasian journal of mathematical and computer applications, Tome 6 (2018) no. 2, pp. 34-42. http://geodesic.mathdoc.fr/item/EJMCA_2018_6_2_a2/