Study of regularized methods of gradient type for irregular operator equations
Eurasian journal of mathematical and computer applications, Tome 6 (2018) no. 2, pp. 34-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we give some estimates for convergence rates of the iteratively regularized steepest descent and minimal error methods.
Keywords: Regularization, ill-posed problems, iterative methods, nonlinear equations.
@article{EJMCA_2018_6_2_a2,
     author = {P. A. Chistyakov},
     title = {Study of regularized methods of gradient type for irregular operator equations},
     journal = {Eurasian journal of mathematical and computer applications},
     pages = {34--42},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJMCA_2018_6_2_a2/}
}
TY  - JOUR
AU  - P. A. Chistyakov
TI  - Study of regularized methods of gradient type for irregular operator equations
JO  - Eurasian journal of mathematical and computer applications
PY  - 2018
SP  - 34
EP  - 42
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJMCA_2018_6_2_a2/
LA  - en
ID  - EJMCA_2018_6_2_a2
ER  - 
%0 Journal Article
%A P. A. Chistyakov
%T Study of regularized methods of gradient type for irregular operator equations
%J Eurasian journal of mathematical and computer applications
%D 2018
%P 34-42
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJMCA_2018_6_2_a2/
%G en
%F EJMCA_2018_6_2_a2
P. A. Chistyakov. Study of regularized methods of gradient type for irregular operator equations. Eurasian journal of mathematical and computer applications, Tome 6 (2018) no. 2, pp. 34-42. http://geodesic.mathdoc.fr/item/EJMCA_2018_6_2_a2/