Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EJMCA_2018_6_1_a4, author = {R. G. Novikov}, title = {Inverse scattering for the {Bethe--Peierls} model}, journal = {Eurasian journal of mathematical and computer applications}, pages = {52--55}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EJMCA_2018_6_1_a4/} }
R. G. Novikov. Inverse scattering for the Bethe--Peierls model. Eurasian journal of mathematical and computer applications, Tome 6 (2018) no. 1, pp. 52-55. http://geodesic.mathdoc.fr/item/EJMCA_2018_6_1_a4/
[1] A.D. Agaltsov, R.G. Novikov, “Simplest examples of inverse scattering on the plane at fixed energy”, HAL Id: hal-01570494, 1 (2017), 1-15
[2] S. Albeverio, F. Gesztesy, R.Hoegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, Springer, New-York, 1988
[3] N.P.Badalyan, V.A. Burov, S.A.Morozov, and O.D.Rumyantseva,, “Sattering by acoustic boundary scatterers with small wave sizes and their reconstruction”, Acoustical Physics, 55:1 (2009), 1-7
[4] H.Bethe and R.Peierls, “Quantum theory of the diplon”, Proc. Roy. Soc. London Ser. A, 148 (1935), 146-156
[5] V.A. Burov and S.A.Morozov, “Relationship between the amplitude and phase of a signal scattered by a point-line acoustic inhomogeneity”, Acoustical Physics, 47:6 (2001), 659-664
[6] K.V.Dmitriev, “Matrix Green’s functions and their application in analyzing scattering by density and sound velocity inhomogeneities”, Acoustical Physics, 61:6 (2015), 632-635
[7] P.G.Grinevich and R.G.Novikov, “Multipoint scatterers with bound states at zero energy”, Theoretical and Mathematical Physics, 193:2 (2017), 1675-1679