Inverse scattering for the Bethe–Peierls model
Eurasian journal of mathematical and computer applications, Tome 6 (2018) no. 1, pp. 52-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the phased and phaseless inverse scattering problems for the Bethe–Peierls model. We give complete solutions of these problems including questions of uniqueness, nonuniqueness, reconstruction and characterization.
Keywords: inverse scattering, Schrödinger equation, exactly solvable models.
@article{EJMCA_2018_6_1_a4,
     author = {R. G. Novikov},
     title = {Inverse scattering for the {Bethe{\textendash}Peierls} model},
     journal = {Eurasian journal of mathematical and computer applications},
     pages = {52--55},
     year = {2018},
     volume = {6},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJMCA_2018_6_1_a4/}
}
TY  - JOUR
AU  - R. G. Novikov
TI  - Inverse scattering for the Bethe–Peierls model
JO  - Eurasian journal of mathematical and computer applications
PY  - 2018
SP  - 52
EP  - 55
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/EJMCA_2018_6_1_a4/
LA  - en
ID  - EJMCA_2018_6_1_a4
ER  - 
%0 Journal Article
%A R. G. Novikov
%T Inverse scattering for the Bethe–Peierls model
%J Eurasian journal of mathematical and computer applications
%D 2018
%P 52-55
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/EJMCA_2018_6_1_a4/
%G en
%F EJMCA_2018_6_1_a4
R. G. Novikov. Inverse scattering for the Bethe–Peierls model. Eurasian journal of mathematical and computer applications, Tome 6 (2018) no. 1, pp. 52-55. http://geodesic.mathdoc.fr/item/EJMCA_2018_6_1_a4/

[1] A.D. Agaltsov, R.G. Novikov, “Simplest examples of inverse scattering on the plane at fixed energy”, HAL Id: hal-01570494, 1 (2017), 1-15

[2] S. Albeverio, F. Gesztesy, R.Hoegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, Springer, New-York, 1988

[3] N.P.Badalyan, V.A. Burov, S.A.Morozov, and O.D.Rumyantseva,, “Sattering by acoustic boundary scatterers with small wave sizes and their reconstruction”, Acoustical Physics, 55:1 (2009), 1-7

[4] H.Bethe and R.Peierls, “Quantum theory of the diplon”, Proc. Roy. Soc. London Ser. A, 148 (1935), 146-156

[5] V.A. Burov and S.A.Morozov, “Relationship between the amplitude and phase of a signal scattered by a point-line acoustic inhomogeneity”, Acoustical Physics, 47:6 (2001), 659-664

[6] K.V.Dmitriev, “Matrix GreenвЂTMs functions and their application in analyzing scattering by density and sound velocity inhomogeneities”, Acoustical Physics, 61:6 (2015), 632-635

[7] P.G.Grinevich and R.G.Novikov, “Multipoint scatterers with bound states at zero energy”, Theoretical and Mathematical Physics, 193:2 (2017), 1675-1679