$Q$-integral equations of fractional orders
Electronic Journal of Differential Equations, Tome 2016 (2016).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The aim of this paper is to study the existence of solutions for a class of q-integral equations of fractional orders. The techniques in this work are based on the measure of non-compactness argument and a generalized version of Darbo's theorem. An example is presented to illustrate the obtained result.
Classification : 31A10, 26A33, 47H08
Keywords: q-fractional integral, existence, measure of non-compactness
@article{EJDE_2016__2016__a8,
     author = {Jleli, Mohamed and Mursaleen, Mohammad and Samet, Bessem},
     title = {$Q$-integral equations of fractional orders},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2016},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2016__2016__a8/}
}
TY  - JOUR
AU  - Jleli, Mohamed
AU  - Mursaleen, Mohammad
AU  - Samet, Bessem
TI  - $Q$-integral equations of fractional orders
JO  - Electronic Journal of Differential Equations
PY  - 2016
VL  - 2016
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2016__2016__a8/
LA  - en
ID  - EJDE_2016__2016__a8
ER  - 
%0 Journal Article
%A Jleli, Mohamed
%A Mursaleen, Mohammad
%A Samet, Bessem
%T $Q$-integral equations of fractional orders
%J Electronic Journal of Differential Equations
%D 2016
%V 2016
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2016__2016__a8/
%G en
%F EJDE_2016__2016__a8
Jleli, Mohamed; Mursaleen, Mohammad; Samet, Bessem. $Q$-integral equations of fractional orders. Electronic Journal of Differential Equations, Tome 2016 (2016). http://geodesic.mathdoc.fr/item/EJDE_2016__2016__a8/