Inverse spectral problems for energy-dependent Sturm-Liouville equations with finitely many point $\delta$-interactions
Electronic Journal of Differential Equations, Tome 2016 (2016).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this study, inverse spectral problems for a energy-dependent Sturm-Liouville equations with finitely many point $\delta $-interactions. The uniqueness theorems for the inverse problems of reconstruction of the boundary value problem from the Weyl function, from the spectral data and from two spectra are proved and a constructive procedure for finding its solution are obtained.
Classification : 34A55, 34B24, 34L05
Keywords: energy-dependent Sturm-Liouville equation, inverse spectral problems, point delta-interactions
@article{EJDE_2016__2016__a40,
     author = {Manafov, Manaf Dzh.},
     title = {Inverse spectral problems for energy-dependent {Sturm-Liouville} equations with finitely many point $\delta$-interactions},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2016},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2016__2016__a40/}
}
TY  - JOUR
AU  - Manafov, Manaf Dzh.
TI  - Inverse spectral problems for energy-dependent Sturm-Liouville equations with finitely many point $\delta$-interactions
JO  - Electronic Journal of Differential Equations
PY  - 2016
VL  - 2016
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2016__2016__a40/
LA  - en
ID  - EJDE_2016__2016__a40
ER  - 
%0 Journal Article
%A Manafov, Manaf Dzh.
%T Inverse spectral problems for energy-dependent Sturm-Liouville equations with finitely many point $\delta$-interactions
%J Electronic Journal of Differential Equations
%D 2016
%V 2016
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2016__2016__a40/
%G en
%F EJDE_2016__2016__a40
Manafov, Manaf Dzh. Inverse spectral problems for energy-dependent Sturm-Liouville equations with finitely many point $\delta$-interactions. Electronic Journal of Differential Equations, Tome 2016 (2016). http://geodesic.mathdoc.fr/item/EJDE_2016__2016__a40/