Existence and concentration of ground state solutions for a Kirchhoff type problem
Electronic Journal of Differential Equations, Tome 2016 (2016).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This article concerns the Kirchhoff type problem $$\displaylines{ -\Big(\varepsilon^2a+\varepsilon b\int_{\mathbb{R}^3} |\nabla u|^2dx\Big)\Delta u +V(x)u= K(x)|u|^{p-1}u,\quad x\in \mathbb{R}^3,\cr u\in H^1(\mathbb{R}^3), }$$ where a,b are positive constants, 2 p 5, $\varepsilon>0$ is a small parameter, and $V(x),K(x)\in C^1(\mathbb{R}^3)$. Under certain assumptions on the non-constant potentials $V(x)$ and $K(x)$, we prove the existence and concentration properties of a positive ground state solution as $\varepsilon\to 0$. Our main tool is a Nehari-Pohozaev manifold.
Classification : 35A15, 35B33, 35J62
Keywords: Nehari-pohozaev manifold, nonlocal problem, positive solution, concentration property
@article{EJDE_2016__2016__a3,
     author = {Fan, Haining},
     title = {Existence and concentration of ground state solutions for a {Kirchhoff} type problem},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2016},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2016__2016__a3/}
}
TY  - JOUR
AU  - Fan, Haining
TI  - Existence and concentration of ground state solutions for a Kirchhoff type problem
JO  - Electronic Journal of Differential Equations
PY  - 2016
VL  - 2016
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2016__2016__a3/
LA  - en
ID  - EJDE_2016__2016__a3
ER  - 
%0 Journal Article
%A Fan, Haining
%T Existence and concentration of ground state solutions for a Kirchhoff type problem
%J Electronic Journal of Differential Equations
%D 2016
%V 2016
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2016__2016__a3/
%G en
%F EJDE_2016__2016__a3
Fan, Haining. Existence and concentration of ground state solutions for a Kirchhoff type problem. Electronic Journal of Differential Equations, Tome 2016 (2016). http://geodesic.mathdoc.fr/item/EJDE_2016__2016__a3/