Existence and exponential stability of anti-periodic solutions in cellular neural networks with time-varying delays and impulsive effects
Electronic Journal of Differential Equations, Tome 2016 (2016).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article we study a cellular neural network with impulsive effects. By using differential inequality techniques, we obtain verifiable criteria on the existence and exponential stability of anti-periodic solutions. An example is included to illustrate the feasibility and of our main results.
Classification : 34C25, 34K13, 34K25
Keywords: cellular neural network, anti-periodic solution, impulse, exponential stability, time-varying delay
@article{EJDE_2016__2016__a21,
     author = {Xu, Changjin},
     title = {Existence and exponential stability of anti-periodic solutions in cellular neural networks with time-varying delays and impulsive effects},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2016},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2016__2016__a21/}
}
TY  - JOUR
AU  - Xu, Changjin
TI  - Existence and exponential stability of anti-periodic solutions in cellular neural networks with time-varying delays and impulsive effects
JO  - Electronic Journal of Differential Equations
PY  - 2016
VL  - 2016
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2016__2016__a21/
LA  - en
ID  - EJDE_2016__2016__a21
ER  - 
%0 Journal Article
%A Xu, Changjin
%T Existence and exponential stability of anti-periodic solutions in cellular neural networks with time-varying delays and impulsive effects
%J Electronic Journal of Differential Equations
%D 2016
%V 2016
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2016__2016__a21/
%G en
%F EJDE_2016__2016__a21
Xu, Changjin. Existence and exponential stability of anti-periodic solutions in cellular neural networks with time-varying delays and impulsive effects. Electronic Journal of Differential Equations, Tome 2016 (2016). http://geodesic.mathdoc.fr/item/EJDE_2016__2016__a21/