Selfadjoint singular differential operators of first order and their spectrum
Electronic Journal of Differential Equations, Tome 2016 (2016).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Based on Calkin-Gorbachuk method, we describe all selfadjoint extensions of the minimal operator generated by linear multipoint singular symmetric differential-operator, as a direct sum of weighted Hilbert space of vector-functions. Another approach to the investigation of this problem has been done by Everitt, Zettl and Markus. Also we study the structure of spectrum of these extensions.
Classification : 47A10, 47B38
Keywords: singular selfadjoint differential operator, spectrum
@article{EJDE_2016__2016__a0,
     author = {Ismailov, Zameddin I. and Ipek, Pembe},
     title = {Selfadjoint singular differential operators of first order and their spectrum},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2016},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2016__2016__a0/}
}
TY  - JOUR
AU  - Ismailov, Zameddin I.
AU  - Ipek, Pembe
TI  - Selfadjoint singular differential operators of first order and their spectrum
JO  - Electronic Journal of Differential Equations
PY  - 2016
VL  - 2016
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2016__2016__a0/
LA  - en
ID  - EJDE_2016__2016__a0
ER  - 
%0 Journal Article
%A Ismailov, Zameddin I.
%A Ipek, Pembe
%T Selfadjoint singular differential operators of first order and their spectrum
%J Electronic Journal of Differential Equations
%D 2016
%V 2016
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2016__2016__a0/
%G en
%F EJDE_2016__2016__a0
Ismailov, Zameddin I.; Ipek, Pembe. Selfadjoint singular differential operators of first order and their spectrum. Electronic Journal of Differential Equations, Tome 2016 (2016). http://geodesic.mathdoc.fr/item/EJDE_2016__2016__a0/