Existence of solutions to hemivariational inequalities involving the $p(x)$-biharmonic operator
Electronic Journal of Differential Equations, Tome 2015 (2015).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This article concerns the existence of solutions to boundary-value problems involving the $p(x)$-biharmonic operator. Our technical approach is the variational-hemivariational inequality on bounded domains by using the mountain pass theorem and the critical point theory for Motreanu-Panagiotopoulos type functionals.
Classification : 49J40, 35J35, 58E05, 35B30, 35J60
Keywords: $p(x)$-biharmonic, mountain pass theorem, critical points, variational method, variable exponent Sobolev space
@article{EJDE_2015__2015__a86,
     author = {Alimohammady, Mohsen and Fattahi, Fariba},
     title = {Existence of solutions to hemivariational inequalities involving the $p(x)$-biharmonic operator},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2015},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a86/}
}
TY  - JOUR
AU  - Alimohammady, Mohsen
AU  - Fattahi, Fariba
TI  - Existence of solutions to hemivariational inequalities involving the $p(x)$-biharmonic operator
JO  - Electronic Journal of Differential Equations
PY  - 2015
VL  - 2015
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a86/
LA  - en
ID  - EJDE_2015__2015__a86
ER  - 
%0 Journal Article
%A Alimohammady, Mohsen
%A Fattahi, Fariba
%T Existence of solutions to hemivariational inequalities involving the $p(x)$-biharmonic operator
%J Electronic Journal of Differential Equations
%D 2015
%V 2015
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a86/
%G en
%F EJDE_2015__2015__a86
Alimohammady, Mohsen; Fattahi, Fariba. Existence of solutions to hemivariational inequalities involving the $p(x)$-biharmonic operator. Electronic Journal of Differential Equations, Tome 2015 (2015). http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a86/