Existence of periodic solutions for sub-linear first-order Hamiltonian systems
Electronic Journal of Differential Equations, Tome 2015 (2015).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove the existence solutions for the sub-linear first-order Hamiltonian system $J\dot{u}(t)+Au(t)+\nabla H(t,u(t))=h(t)$ by using the least action principle and a version of the Saddle Point Theorem.
Classification : 34C25
Keywords: Hamiltonian systems, periodic solutions, saddle point theorem, least action principle, sub-linear conditions
@article{EJDE_2015__2015__a84,
     author = {Timoumi, Mohsen},
     title = {Existence of periodic solutions for sub-linear first-order {Hamiltonian} systems},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2015},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a84/}
}
TY  - JOUR
AU  - Timoumi, Mohsen
TI  - Existence of periodic solutions for sub-linear first-order Hamiltonian systems
JO  - Electronic Journal of Differential Equations
PY  - 2015
VL  - 2015
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a84/
LA  - en
ID  - EJDE_2015__2015__a84
ER  - 
%0 Journal Article
%A Timoumi, Mohsen
%T Existence of periodic solutions for sub-linear first-order Hamiltonian systems
%J Electronic Journal of Differential Equations
%D 2015
%V 2015
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a84/
%G en
%F EJDE_2015__2015__a84
Timoumi, Mohsen. Existence of periodic solutions for sub-linear first-order Hamiltonian systems. Electronic Journal of Differential Equations, Tome 2015 (2015). http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a84/