Oscillation criteria for even-order nonlinear neutral difference equations with continuous variables
Electronic Journal of Differential Equations, Tome 2015 (2015).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we study the oscillatory behavior of solutions to even-order nonlinear neutral difference equations of the form $$ \Delta^m_\tau( x(t)-px(t-r))+f(t,x(g(t)))=0. $$ Using an integral transformation, the Riccati transformation, and iteration, we obtain sufficient conditions for all solutions to be oscillatory. Examples are also given to illustrate the obtained criteria.
Classification : 39A10, 39A21
Keywords: neutral difference equations, oscillation, continuous variable
@article{EJDE_2015__2015__a79,
     author = {Wu, Shuhui and Calay, Pargat Singh and Hou, Zhanyuan},
     title = {Oscillation criteria for even-order nonlinear neutral difference equations with continuous variables},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2015},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a79/}
}
TY  - JOUR
AU  - Wu, Shuhui
AU  - Calay, Pargat Singh
AU  - Hou, Zhanyuan
TI  - Oscillation criteria for even-order nonlinear neutral difference equations with continuous variables
JO  - Electronic Journal of Differential Equations
PY  - 2015
VL  - 2015
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a79/
LA  - en
ID  - EJDE_2015__2015__a79
ER  - 
%0 Journal Article
%A Wu, Shuhui
%A Calay, Pargat Singh
%A Hou, Zhanyuan
%T Oscillation criteria for even-order nonlinear neutral difference equations with continuous variables
%J Electronic Journal of Differential Equations
%D 2015
%V 2015
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a79/
%G en
%F EJDE_2015__2015__a79
Wu, Shuhui; Calay, Pargat Singh; Hou, Zhanyuan. Oscillation criteria for even-order nonlinear neutral difference equations with continuous variables. Electronic Journal of Differential Equations, Tome 2015 (2015). http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a79/