Existence of infinitely many periodic solutions for second-order nonautonomous Hamiltonian systems
Electronic Journal of Differential Equations, Tome 2015 (2015).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: By using minimax methods and critical point theory, we obtain infinitely many periodic solutions for a second-order nonautonomous Hamiltonian systems, when the gradient of potential energy does not exceed linear growth.
Classification : 34C25, 58E50
Keywords: periodic solutions, minimax methods, linear, Hamiltonian system, critical point
@article{EJDE_2015__2015__a75,
     author = {Guan, Wen and Wang, Da-Bin},
     title = {Existence of infinitely many periodic solutions for second-order nonautonomous {Hamiltonian} systems},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2015},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a75/}
}
TY  - JOUR
AU  - Guan, Wen
AU  - Wang, Da-Bin
TI  - Existence of infinitely many periodic solutions for second-order nonautonomous Hamiltonian systems
JO  - Electronic Journal of Differential Equations
PY  - 2015
VL  - 2015
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a75/
LA  - en
ID  - EJDE_2015__2015__a75
ER  - 
%0 Journal Article
%A Guan, Wen
%A Wang, Da-Bin
%T Existence of infinitely many periodic solutions for second-order nonautonomous Hamiltonian systems
%J Electronic Journal of Differential Equations
%D 2015
%V 2015
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a75/
%G en
%F EJDE_2015__2015__a75
Guan, Wen; Wang, Da-Bin. Existence of infinitely many periodic solutions for second-order nonautonomous Hamiltonian systems. Electronic Journal of Differential Equations, Tome 2015 (2015). http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a75/