Extremal points for a higher-order fractional boundary-value problem
Electronic Journal of Differential Equations, Tome 2015 (2015).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The Krein-Rutman theorem is applied to establish the extremal point, $b_0$, for a higher-order Riemann-Liouville fractional equation, $D_{0+}^{\alpha}y+p(t)y = 0, 0 $, under the boundary conditions $y^{(i)}(0)= 0, y^{(n-1)}(b) = 0, i=0,1,2,\ldots, n-1$. The key argument is that a mapping, which maps a linear, compact operator, depending on $b$ to its spectral radius, is continuous and strictly increasing as a function of b. Furthermore, we also treat a nonlinear problem as an application of the result for the extremal point for the linear case.
Classification : 26A33, 34B08, 34B40
Keywords: u-positive operator, fractional boundary value problem, spectral radius
@article{EJDE_2015__2015__a73,
     author = {Yang, Aijun and Henderson, Johnny and Nelms, Charles jun.},
     title = {Extremal points for a higher-order fractional boundary-value problem},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2015},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a73/}
}
TY  - JOUR
AU  - Yang, Aijun
AU  - Henderson, Johnny
AU  - Nelms, Charles jun.
TI  - Extremal points for a higher-order fractional boundary-value problem
JO  - Electronic Journal of Differential Equations
PY  - 2015
VL  - 2015
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a73/
LA  - en
ID  - EJDE_2015__2015__a73
ER  - 
%0 Journal Article
%A Yang, Aijun
%A Henderson, Johnny
%A Nelms, Charles jun.
%T Extremal points for a higher-order fractional boundary-value problem
%J Electronic Journal of Differential Equations
%D 2015
%V 2015
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a73/
%G en
%F EJDE_2015__2015__a73
Yang, Aijun; Henderson, Johnny; Nelms, Charles jun. Extremal points for a higher-order fractional boundary-value problem. Electronic Journal of Differential Equations, Tome 2015 (2015). http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a73/