Some relations between the Caputo fractional difference operators and integer-order differences
Electronic Journal of Differential Equations, Tome 2015 (2015).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we are concerned with the relationships between the sign of Caputo fractional differences and integer nabla differences. In particular, we show that if $N-1\nu$, for $t\in\mathbb{N}_{a+1}$ and $\nabla^{N-1}f(a)\geq 0$, then $\nabla^{N-1}f(t)\geq 0$ for $t\in\mathbb{N}_a$. Conversely, if $N-1\nu$, and $\nabla^{N}f(t)\geq 0$ for $t\in\mathbb{N}_{a+1}$, then $\nabla^{\nu}_{a^*}f(t)\geq 0$, for each $t\in\mathbb{N}_{a+1}$. As applications of these two results, we get that if $1\nu2, f:\mathbb{N}_{a-1}\to\mathbb{R}, \nabla^\nu_{a^*}f(t)\geq 0$ for $t\in\mathbb{N}_{a+1}$ and $f(a)\geq f(a-1)$, then $f(t)$ is an increasing function for $t\in \mathbb{N}_{a-1}$. Conversely if $0\nu1, f:\mathbb{N}_{a-1}\to\mathbb{R}$ and $f$ is an increasing function for $t\in\mathbb{N}_{a}$, then $\nabla^\nu_{a^*}f(t)\geq 0$, for each $t\in\mathbb{N}_{a+1}$. We also give a counterexample to show that the above assumption $f(a)\geq f(a-1)$ in the last result is essential. These results demonstrate that, in some sense, the positivity of the $\nu$-th order Caputo fractional difference has a strong connection to the monotonicity of $f(t)$.
Classification : 39A12, 39A70
Keywords: Caputo fractional difference, monotonicity, Taylor monomial
@article{EJDE_2015__2015__a65,
     author = {Jia, Baoguo and Erbe, Lynn and Peterson, Allan},
     title = {Some relations between the {Caputo} fractional difference operators and integer-order differences},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2015},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a65/}
}
TY  - JOUR
AU  - Jia, Baoguo
AU  - Erbe, Lynn
AU  - Peterson, Allan
TI  - Some relations between the Caputo fractional difference operators and integer-order differences
JO  - Electronic Journal of Differential Equations
PY  - 2015
VL  - 2015
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a65/
LA  - en
ID  - EJDE_2015__2015__a65
ER  - 
%0 Journal Article
%A Jia, Baoguo
%A Erbe, Lynn
%A Peterson, Allan
%T Some relations between the Caputo fractional difference operators and integer-order differences
%J Electronic Journal of Differential Equations
%D 2015
%V 2015
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a65/
%G en
%F EJDE_2015__2015__a65
Jia, Baoguo; Erbe, Lynn; Peterson, Allan. Some relations between the Caputo fractional difference operators and integer-order differences. Electronic Journal of Differential Equations, Tome 2015 (2015). http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a65/