Existence and multiplicity of solutions for sublinear ordinary differential equations at resonance
Electronic Journal of Differential Equations, Tome 2015 (2015).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Using a $$ \mathcal{L} u(t)=\mu u(t)+W_u(t,u(t)),\quad 0\leq t\leq L $$ with suitable periodic or boundary conditions. Here $\mathcal{L}$ is a linear positive selfadjoint operator, $\mu$ is a parameter between two egienvalues of this operator, and $W_u$ is the gradient of a potential function.
Classification : 58E05, 34C37, 70H05
Keywords: sublinear potential, $Z_2$ type index theorem, critical point, resonance, Hamiltonian system
@article{EJDE_2015__2015__a61,
     author = {Li, Chengyue and Chen, Fenfen},
     title = {Existence and multiplicity of solutions for sublinear ordinary differential equations at resonance},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2015},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a61/}
}
TY  - JOUR
AU  - Li, Chengyue
AU  - Chen, Fenfen
TI  - Existence and multiplicity of solutions for sublinear ordinary differential equations at resonance
JO  - Electronic Journal of Differential Equations
PY  - 2015
VL  - 2015
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a61/
LA  - en
ID  - EJDE_2015__2015__a61
ER  - 
%0 Journal Article
%A Li, Chengyue
%A Chen, Fenfen
%T Existence and multiplicity of solutions for sublinear ordinary differential equations at resonance
%J Electronic Journal of Differential Equations
%D 2015
%V 2015
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a61/
%G en
%F EJDE_2015__2015__a61
Li, Chengyue; Chen, Fenfen. Existence and multiplicity of solutions for sublinear ordinary differential equations at resonance. Electronic Journal of Differential Equations, Tome 2015 (2015). http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a61/