Hopf maximum principle revisited
Electronic Journal of Differential Equations, Tome 2015 (2015).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A weak version of Hopf maximum principle for elliptic equations in divergence form $$ \sum_{i,j=1}^N\partial_i(a_{ij}(x)\partial_ju)=0 $$ with Holder continuous coefficients $a_{ij}$ was shown in [3], in the two-dimensional case. It was also pointed out that this result could be extended to any dimension. The objective of the present note is to provide a complete proof of this fact, and to cover operators more general than the one studied in [3].
Classification : 35B50
Keywords: maximum principle
@article{EJDE_2015__2015__a41,
     author = {Sabina de Lis, Jose C.},
     title = {Hopf maximum principle revisited},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2015},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a41/}
}
TY  - JOUR
AU  - Sabina de Lis, Jose C.
TI  - Hopf maximum principle revisited
JO  - Electronic Journal of Differential Equations
PY  - 2015
VL  - 2015
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a41/
LA  - en
ID  - EJDE_2015__2015__a41
ER  - 
%0 Journal Article
%A Sabina de Lis, Jose C.
%T Hopf maximum principle revisited
%J Electronic Journal of Differential Equations
%D 2015
%V 2015
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a41/
%G en
%F EJDE_2015__2015__a41
Sabina de Lis, Jose C. Hopf maximum principle revisited. Electronic Journal of Differential Equations, Tome 2015 (2015). http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a41/