Properties of solution diagrams for bistable equations
Electronic Journal of Differential Equations, Tome 2015 (2015).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Bistable equation serves as a simple model of phase transition at an appropriate critical temperature. The structure of its stationary solutions determines the dynamics of the evolutionary model. The norm of a stationary solution depending on the diffusion coefficient is usually depicted in a solution diagram. As far as we know, the qualitative properties of such diagram like continuity and differentiability have not been proved rigorously yet. The purpose of our paper is to fill in this gap.
Classification : 34B15, 34B16
Keywords: bistable equation, solution diagram, time map
@article{EJDE_2015__2015__a38,
     author = {Dr\'abek, Pavel and Ho\v{s}ek, Radim},
     title = {Properties of solution diagrams for bistable equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2015},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a38/}
}
TY  - JOUR
AU  - Drábek, Pavel
AU  - Hošek, Radim
TI  - Properties of solution diagrams for bistable equations
JO  - Electronic Journal of Differential Equations
PY  - 2015
VL  - 2015
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a38/
LA  - en
ID  - EJDE_2015__2015__a38
ER  - 
%0 Journal Article
%A Drábek, Pavel
%A Hošek, Radim
%T Properties of solution diagrams for bistable equations
%J Electronic Journal of Differential Equations
%D 2015
%V 2015
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a38/
%G en
%F EJDE_2015__2015__a38
Drábek, Pavel; Hošek, Radim. Properties of solution diagrams for bistable equations. Electronic Journal of Differential Equations, Tome 2015 (2015). http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a38/