Well-posedness for one-dimensional anisotropic Cahn-Hilliard and Allen-Cahn systems
Electronic Journal of Differential Equations, Tome 2015 (2015).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Our aim is to prove the existence and uniqueness of solutions for one-dimensional Cahn-Hilliard and Allen-Cahn type equations based on a modification of the Ginzburg-Landau free energy proposed in [8]. In particular, the free energy contains an additional term called Willmore regularization and takes into account strong anisotropy effects.
Classification : 35B45, 35K55
Keywords: Cahn-Hilliard equation, Allen-Cahn equation, well-posedness, willmore regularization
@article{EJDE_2015__2015__a25,
     author = {Makki, Ahmad and Miranville, Alain},
     title = {Well-posedness for one-dimensional anisotropic {Cahn-Hilliard} and {Allen-Cahn} systems},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2015},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a25/}
}
TY  - JOUR
AU  - Makki, Ahmad
AU  - Miranville, Alain
TI  - Well-posedness for one-dimensional anisotropic Cahn-Hilliard and Allen-Cahn systems
JO  - Electronic Journal of Differential Equations
PY  - 2015
VL  - 2015
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a25/
LA  - en
ID  - EJDE_2015__2015__a25
ER  - 
%0 Journal Article
%A Makki, Ahmad
%A Miranville, Alain
%T Well-posedness for one-dimensional anisotropic Cahn-Hilliard and Allen-Cahn systems
%J Electronic Journal of Differential Equations
%D 2015
%V 2015
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a25/
%G en
%F EJDE_2015__2015__a25
Makki, Ahmad; Miranville, Alain. Well-posedness for one-dimensional anisotropic Cahn-Hilliard and Allen-Cahn systems. Electronic Journal of Differential Equations, Tome 2015 (2015). http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a25/