Two-species competition models with fitness-dependent dispersal on non-convex bounded domains
Electronic Journal of Differential Equations, Tome 2015 (2015).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we show the existence of global bounded solutions to a two-species competition models with fitness-dependent dispersal posed in a bounded domain $\Omega\subset\mathbb{R}^N$ with smooth boundary. In particular, we remove the convexity assumption on $\Omega$ used by Lou-Tao-Winkler [13].
Classification : 35A01, 35B40, 35K57, 92D25
Keywords: two-species competition model, global solution, bounded solution
@article{EJDE_2015__2015__a20,
     author = {Li, Xie},
     title = {Two-species competition models with fitness-dependent dispersal on non-convex bounded domains},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2015},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a20/}
}
TY  - JOUR
AU  - Li, Xie
TI  - Two-species competition models with fitness-dependent dispersal on non-convex bounded domains
JO  - Electronic Journal of Differential Equations
PY  - 2015
VL  - 2015
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a20/
LA  - en
ID  - EJDE_2015__2015__a20
ER  - 
%0 Journal Article
%A Li, Xie
%T Two-species competition models with fitness-dependent dispersal on non-convex bounded domains
%J Electronic Journal of Differential Equations
%D 2015
%V 2015
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a20/
%G en
%F EJDE_2015__2015__a20
Li, Xie. Two-species competition models with fitness-dependent dispersal on non-convex bounded domains. Electronic Journal of Differential Equations, Tome 2015 (2015). http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a20/