Existence and convergence theorems for evolutionary hemivariational inequalities of second order
Electronic Journal of Differential Equations, Tome 2015 (2015).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This article concerns with a class of evolutionary hemivariational inequalities in the framework of evolution triple. Based on the Rothe method, monotonicity-compactness technique and the properties of Clarke's generalized derivative and gradient, the existence and convergence theorems to these problems are established. The main idea in the proof is using the time difference to construct the approximate problems. The work generalizes the existence results on evolution inclusions and hemivariational inequalities of second order.
Classification : 35K15, 35K86
Keywords: hemivariational inequality, nonlinear evolution inclusion, rothe method, pseudomonotone operator, clarke's generalized gradient
@article{EJDE_2015__2015__a18,
     author = {Peng, Zijia and Xiao, Cuie},
     title = {Existence and convergence theorems for evolutionary hemivariational inequalities of second order},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2015},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a18/}
}
TY  - JOUR
AU  - Peng, Zijia
AU  - Xiao, Cuie
TI  - Existence and convergence theorems for evolutionary hemivariational inequalities of second order
JO  - Electronic Journal of Differential Equations
PY  - 2015
VL  - 2015
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a18/
LA  - en
ID  - EJDE_2015__2015__a18
ER  - 
%0 Journal Article
%A Peng, Zijia
%A Xiao, Cuie
%T Existence and convergence theorems for evolutionary hemivariational inequalities of second order
%J Electronic Journal of Differential Equations
%D 2015
%V 2015
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a18/
%G en
%F EJDE_2015__2015__a18
Peng, Zijia; Xiao, Cuie. Existence and convergence theorems for evolutionary hemivariational inequalities of second order. Electronic Journal of Differential Equations, Tome 2015 (2015). http://geodesic.mathdoc.fr/item/EJDE_2015__2015__a18/