Existence and multiplicity of positive solutions for indefinite semilinear elliptic problems in $\Bbb R^N$
Electronic Journal of Differential Equations, Tome 2014 (2014).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we study a class of indefinite semilinear elliptic problems in R^N. By using the fibering maps and studying some properties of the Nehari manifold, we obtain the existence and multiplicity of positive solutions.
Classification : 35J20, 35J61
Keywords: ground state solutions, multiple positive solutions, Nehari manifold, variational method
@article{EJDE_2014__2014__a98,
     author = {Cheng, Yi-Hsin and Wu, Tsung-Fang},
     title = {Existence and multiplicity of positive solutions for indefinite semilinear elliptic problems in $\Bbb R^N$},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2014},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a98/}
}
TY  - JOUR
AU  - Cheng, Yi-Hsin
AU  - Wu, Tsung-Fang
TI  - Existence and multiplicity of positive solutions for indefinite semilinear elliptic problems in $\Bbb R^N$
JO  - Electronic Journal of Differential Equations
PY  - 2014
VL  - 2014
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a98/
LA  - en
ID  - EJDE_2014__2014__a98
ER  - 
%0 Journal Article
%A Cheng, Yi-Hsin
%A Wu, Tsung-Fang
%T Existence and multiplicity of positive solutions for indefinite semilinear elliptic problems in $\Bbb R^N$
%J Electronic Journal of Differential Equations
%D 2014
%V 2014
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a98/
%G en
%F EJDE_2014__2014__a98
Cheng, Yi-Hsin; Wu, Tsung-Fang. Existence and multiplicity of positive solutions for indefinite semilinear elliptic problems in $\Bbb R^N$. Electronic Journal of Differential Equations, Tome 2014 (2014). http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a98/