Multiplicity and minimality of periodic solutions to delay differential system
Electronic Journal of Differential Equations, Tome 2014 (2014).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we study periodic solutions of a class of delay differential equations. By restricting our discussion on generalized Nehari Manifold, some sufficient conditions are obtained to guarantee the existence of infinitely many pairs of periodic solutions. Also, there exists at least one periodic solution with prescribed minimal period.
Classification : 34K13, 58E05
Keywords: Nehari manifold, periodic solution, delay differential equation, minimal period
@article{EJDE_2014__2014__a91,
     author = {Xiao, Huafeng and Guo, Zhiming},
     title = {Multiplicity and minimality of periodic solutions to delay differential system},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2014},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a91/}
}
TY  - JOUR
AU  - Xiao, Huafeng
AU  - Guo, Zhiming
TI  - Multiplicity and minimality of periodic solutions to delay differential system
JO  - Electronic Journal of Differential Equations
PY  - 2014
VL  - 2014
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a91/
LA  - en
ID  - EJDE_2014__2014__a91
ER  - 
%0 Journal Article
%A Xiao, Huafeng
%A Guo, Zhiming
%T Multiplicity and minimality of periodic solutions to delay differential system
%J Electronic Journal of Differential Equations
%D 2014
%V 2014
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a91/
%G en
%F EJDE_2014__2014__a91
Xiao, Huafeng; Guo, Zhiming. Multiplicity and minimality of periodic solutions to delay differential system. Electronic Journal of Differential Equations, Tome 2014 (2014). http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a91/