Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $\Bbb R^N$
Electronic Journal of Differential Equations, Tome 2014 (2014).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This article concerns the existence and multiplicity of solutions to a class of $p(x)$-Laplacian equations. We introduce a revised Ambrosetti-Rabinowitz condition, and show that the problem has a nontrivial solution and infinitely many solutions.
Classification : 35J60, 35J20, 58E30
Keywords: $p(x)$-Laplacian, variational method, radial solution, ambrosetti-rabinowitz condition
@article{EJDE_2014__2014__a69,
     author = {Ge, Bin and Zhou, Qingmei},
     title = {Existence and multiplicity of solutions for $p(x)${-Laplacian} equations in $\Bbb R^N$},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2014},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a69/}
}
TY  - JOUR
AU  - Ge, Bin
AU  - Zhou, Qingmei
TI  - Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $\Bbb R^N$
JO  - Electronic Journal of Differential Equations
PY  - 2014
VL  - 2014
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a69/
LA  - en
ID  - EJDE_2014__2014__a69
ER  - 
%0 Journal Article
%A Ge, Bin
%A Zhou, Qingmei
%T Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $\Bbb R^N$
%J Electronic Journal of Differential Equations
%D 2014
%V 2014
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a69/
%G en
%F EJDE_2014__2014__a69
Ge, Bin; Zhou, Qingmei. Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $\Bbb R^N$. Electronic Journal of Differential Equations, Tome 2014 (2014). http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a69/