Existence of solutions to a normalized $F$-infinity Laplacian equation
Electronic Journal of Differential Equations, Tome 2014 (2014).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, for a continuous function F that is twice differentiable at a point $$\displaylines{ \Delta_{F; \infty}^N u=f, \quad {in }\Omega,\cr u=g, \quad {on }\partial\Omega. }$$
Classification : 35D40, 35J60, 35J70
Keywords: March 18, 2014. published April 16, 2014
@article{EJDE_2014__2014__a6,
     author = {Wang, Hua and He, Yijun},
     title = {Existence of solutions to a normalized $F$-infinity {Laplacian} equation},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2014},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a6/}
}
TY  - JOUR
AU  - Wang, Hua
AU  - He, Yijun
TI  - Existence of solutions to a normalized $F$-infinity Laplacian equation
JO  - Electronic Journal of Differential Equations
PY  - 2014
VL  - 2014
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a6/
LA  - en
ID  - EJDE_2014__2014__a6
ER  - 
%0 Journal Article
%A Wang, Hua
%A He, Yijun
%T Existence of solutions to a normalized $F$-infinity Laplacian equation
%J Electronic Journal of Differential Equations
%D 2014
%V 2014
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a6/
%G en
%F EJDE_2014__2014__a6
Wang, Hua; He, Yijun. Existence of solutions to a normalized $F$-infinity Laplacian equation. Electronic Journal of Differential Equations, Tome 2014 (2014). http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a6/