Existence of solutions to Dirichlet impulsive differential equations through a local minimization principle
Electronic Journal of Differential Equations, Tome 2014 (2014).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A critical point theorem (local minimum result) for differentiable functionals is used for proving that a Dirichlet impulsive differential equation admits at least one non-trivial solution. Some particular cases and a concrete example are also presented.
Classification : 34B37, 34B15, 58E05
Keywords: impulsive differential equations, Dirichlet condition, classical solution, variational methods
@article{EJDE_2014__2014__a58,
     author = {Afrouzi, Ghasem A. and Shokooh, Saeid and Hadjian, Armin},
     title = {Existence of solutions to {Dirichlet} impulsive differential equations through a local minimization principle},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2014},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a58/}
}
TY  - JOUR
AU  - Afrouzi, Ghasem A.
AU  - Shokooh, Saeid
AU  - Hadjian, Armin
TI  - Existence of solutions to Dirichlet impulsive differential equations through a local minimization principle
JO  - Electronic Journal of Differential Equations
PY  - 2014
VL  - 2014
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a58/
LA  - en
ID  - EJDE_2014__2014__a58
ER  - 
%0 Journal Article
%A Afrouzi, Ghasem A.
%A Shokooh, Saeid
%A Hadjian, Armin
%T Existence of solutions to Dirichlet impulsive differential equations through a local minimization principle
%J Electronic Journal of Differential Equations
%D 2014
%V 2014
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a58/
%G en
%F EJDE_2014__2014__a58
Afrouzi, Ghasem A.; Shokooh, Saeid; Hadjian, Armin. Existence of solutions to Dirichlet impulsive differential equations through a local minimization principle. Electronic Journal of Differential Equations, Tome 2014 (2014). http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a58/