Laplace transform and generalized Hyers-Ulam stability of linear differential equations
Electronic Journal of Differential Equations, Tome 2014 (2014).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: By applying the Laplace transform method, we prove that the linear differential equation $$ y^{(n)}(t)+\sum_{k=0}^{n-1}{\alpha_k y^{(k)}(t)}=f(t) $$ has the generalized Hyers-Ulam stability, where $\alpha_k$ is a scalar, y and f are n times continuously differentiable and of exponential order.
Classification : 44A10, 39B82, 34A40, 26D10
Keywords: Laplace transform method, differential equations, generalized Hyers-Ulam stability
@article{EJDE_2014__2014__a46,
     author = {Alqifiary, Qusuay H. and Jung, Soon-Mo},
     title = {Laplace transform and generalized {Hyers-Ulam} stability of linear differential equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2014},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a46/}
}
TY  - JOUR
AU  - Alqifiary, Qusuay H.
AU  - Jung, Soon-Mo
TI  - Laplace transform and generalized Hyers-Ulam stability of linear differential equations
JO  - Electronic Journal of Differential Equations
PY  - 2014
VL  - 2014
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a46/
LA  - en
ID  - EJDE_2014__2014__a46
ER  - 
%0 Journal Article
%A Alqifiary, Qusuay H.
%A Jung, Soon-Mo
%T Laplace transform and generalized Hyers-Ulam stability of linear differential equations
%J Electronic Journal of Differential Equations
%D 2014
%V 2014
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a46/
%G en
%F EJDE_2014__2014__a46
Alqifiary, Qusuay H.; Jung, Soon-Mo. Laplace transform and generalized Hyers-Ulam stability of linear differential equations. Electronic Journal of Differential Equations, Tome 2014 (2014). http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a46/