Halo-shaped bifurcation curves in ecological systems
Electronic Journal of Differential Equations, Tome 2014 (2014).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We examine the structure of positive steady state solutions for a diffusive population model with logistic growth and negative density dependent emigration on the boundary. In particular, this class of nonlinear boundary conditions depends on both the population density and the diffusion coefficient. Results in the one-dimensional case are established via quadrature methods. Additionally, we discuss the existence of a Halo-shaped bifurcation curve.
Classification : 34B18, 34B08
Keywords: nonlinear boundary conditions, logistic growth, positive solutions
@article{EJDE_2014__2014__a43,
     author = {Goddard, Jerome II and Shivaji, Ratnasingham},
     title = {Halo-shaped bifurcation curves in ecological systems},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2014},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a43/}
}
TY  - JOUR
AU  - Goddard, Jerome II
AU  - Shivaji, Ratnasingham
TI  - Halo-shaped bifurcation curves in ecological systems
JO  - Electronic Journal of Differential Equations
PY  - 2014
VL  - 2014
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a43/
LA  - en
ID  - EJDE_2014__2014__a43
ER  - 
%0 Journal Article
%A Goddard, Jerome II
%A Shivaji, Ratnasingham
%T Halo-shaped bifurcation curves in ecological systems
%J Electronic Journal of Differential Equations
%D 2014
%V 2014
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a43/
%G en
%F EJDE_2014__2014__a43
Goddard, Jerome II; Shivaji, Ratnasingham. Halo-shaped bifurcation curves in ecological systems. Electronic Journal of Differential Equations, Tome 2014 (2014). http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a43/