Exact controllability for a wave equation with mixed boundary conditions in a non-cylindrical domain
Electronic Journal of Differential Equations, Tome 2014 (2014).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article we study the exact controllability of a one-dimensional wave equation with mixed boundary conditions in a non-cylindrical domain. The fixed endpoint has a Dirichlet-type boundary condition, while the moving end has a Neumann-type condition. When the speed of the moving endpoint is less than the characteristic speed, the exact controllability of this equation is established by Hilbert Uniqueness Method. Moreover, we shall give the explicit dependence of the controllability time on the speed of the moving endpoint.
Classification : 58J45, 35L05
Keywords: exact controllability, wave equation, mixed boundary conditions, non-cylindrical domain
@article{EJDE_2014__2014__a23,
     author = {Cui, Lizhi and Gao, Hang},
     title = {Exact controllability for a wave equation with mixed boundary conditions in a non-cylindrical domain},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2014},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a23/}
}
TY  - JOUR
AU  - Cui, Lizhi
AU  - Gao, Hang
TI  - Exact controllability for a wave equation with mixed boundary conditions in a non-cylindrical domain
JO  - Electronic Journal of Differential Equations
PY  - 2014
VL  - 2014
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a23/
LA  - en
ID  - EJDE_2014__2014__a23
ER  - 
%0 Journal Article
%A Cui, Lizhi
%A Gao, Hang
%T Exact controllability for a wave equation with mixed boundary conditions in a non-cylindrical domain
%J Electronic Journal of Differential Equations
%D 2014
%V 2014
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a23/
%G en
%F EJDE_2014__2014__a23
Cui, Lizhi; Gao, Hang. Exact controllability for a wave equation with mixed boundary conditions in a non-cylindrical domain. Electronic Journal of Differential Equations, Tome 2014 (2014). http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a23/