Growth of meromorphic solutions of higher order linear differential equations
Electronic Journal of Differential Equations, Tome 2014 (2014).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we investigate the growth of meromorphic solutions of the differential equations $$\displaylines{ f^{(k)}+A_{k-1}f^{(k-1)}+\dots+A_0f=0,\cr f^{(k)}+A_{k-1}f^{(k-1)}+\dots+A_0f=F, }$$ where $A_j, F(j=0,\dots,k-1)$ are meromorphic functions. When there exists one dominant coefficient with lower order less than 1/2, we obtain some estimations of the hyper order and the hyper convergence exponent of zeros of meromorphic solutions of the above equations.
Classification : 30D35, 39B12
Keywords: meromorphic function, differential equations, growth, order
@article{EJDE_2014__2014__a171,
     author = {Wang, Lijun and Liu, Huifang},
     title = {Growth of meromorphic solutions of higher order linear differential equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2014},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a171/}
}
TY  - JOUR
AU  - Wang, Lijun
AU  - Liu, Huifang
TI  - Growth of meromorphic solutions of higher order linear differential equations
JO  - Electronic Journal of Differential Equations
PY  - 2014
VL  - 2014
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a171/
LA  - en
ID  - EJDE_2014__2014__a171
ER  - 
%0 Journal Article
%A Wang, Lijun
%A Liu, Huifang
%T Growth of meromorphic solutions of higher order linear differential equations
%J Electronic Journal of Differential Equations
%D 2014
%V 2014
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a171/
%G en
%F EJDE_2014__2014__a171
Wang, Lijun; Liu, Huifang. Growth of meromorphic solutions of higher order linear differential equations. Electronic Journal of Differential Equations, Tome 2014 (2014). http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a171/