Geodesics of quadratic differentials on Klein surfaces
Electronic Journal of Differential Equations, Tome 2014 (2014).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The objective of this article is to establish the existence of a local Euclidean metric associated with a quadratic differential on a Klein surface, and to describe the shortest curve in the neighborhood of a holomorphic point.
Classification : 30F30, 30F35, 30F50
Keywords: Klein surface, meromorphic quadratic differential, geodesic
@article{EJDE_2014__2014__a162,
     author = {Ro\c{s}iu, Monica},
     title = {Geodesics of quadratic differentials on {Klein} surfaces},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2014},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a162/}
}
TY  - JOUR
AU  - Roşiu, Monica
TI  - Geodesics of quadratic differentials on Klein surfaces
JO  - Electronic Journal of Differential Equations
PY  - 2014
VL  - 2014
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a162/
LA  - en
ID  - EJDE_2014__2014__a162
ER  - 
%0 Journal Article
%A Roşiu, Monica
%T Geodesics of quadratic differentials on Klein surfaces
%J Electronic Journal of Differential Equations
%D 2014
%V 2014
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a162/
%G en
%F EJDE_2014__2014__a162
Roşiu, Monica. Geodesics of quadratic differentials on Klein surfaces. Electronic Journal of Differential Equations, Tome 2014 (2014). http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a162/