Existence of solutions to $p$-Laplacian equations involving general subcritical growth
Electronic Journal of Differential Equations, Tome 2014 (2014).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we consider the quasilinear elliptic equation $-\Delta_p u=\mu f(x,u)$ with the Dirichlet boundary coditions, and under suitable growth condition on the nonlinear term f. Existence of solutions is given for all $\mu>0$ via the variational method and some analysis techniques.
Classification : 35B33, 35J92, 35J35
Keywords: p-Laplacian equation, subcritical growth, variational methods, (C) condition, mountain-pass lemma
@article{EJDE_2014__2014__a13,
     author = {Lan, Yong-Yi},
     title = {Existence of solutions to $p${-Laplacian} equations involving general subcritical growth},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2014},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a13/}
}
TY  - JOUR
AU  - Lan, Yong-Yi
TI  - Existence of solutions to $p$-Laplacian equations involving general subcritical growth
JO  - Electronic Journal of Differential Equations
PY  - 2014
VL  - 2014
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a13/
LA  - en
ID  - EJDE_2014__2014__a13
ER  - 
%0 Journal Article
%A Lan, Yong-Yi
%T Existence of solutions to $p$-Laplacian equations involving general subcritical growth
%J Electronic Journal of Differential Equations
%D 2014
%V 2014
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a13/
%G en
%F EJDE_2014__2014__a13
Lan, Yong-Yi. Existence of solutions to $p$-Laplacian equations involving general subcritical growth. Electronic Journal of Differential Equations, Tome 2014 (2014). http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a13/