Convergence in comparable almost periodic reaction-diffusion systems with Dirichlet boundary conditions
Electronic Journal of Differential Equations, Tome 2014 (2014).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we study the asymptotic dynamics in nonmonotone comparable almost periodic reaction-diffusion systems with Dirichlet boundary condition, which are comparable with uniformly stable strongly order-preserving system. By appealing to the theory of skew-product semiflows, we obtain the asymptotic almost periodicity of uniformly stable solutions to the comparable reaction-diffusion system.
Classification : 37B55, 37L15, 35B15, 35K57
Keywords: reaction-diffusion systems, asymptotic behavior, uniform stability, skew-product semiflows
@article{EJDE_2014__2014__a128,
     author = {Cao, Feng and Fu, Yelai},
     title = {Convergence in comparable almost periodic reaction-diffusion systems with {Dirichlet} boundary conditions},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2014},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a128/}
}
TY  - JOUR
AU  - Cao, Feng
AU  - Fu, Yelai
TI  - Convergence in comparable almost periodic reaction-diffusion systems with Dirichlet boundary conditions
JO  - Electronic Journal of Differential Equations
PY  - 2014
VL  - 2014
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a128/
LA  - en
ID  - EJDE_2014__2014__a128
ER  - 
%0 Journal Article
%A Cao, Feng
%A Fu, Yelai
%T Convergence in comparable almost periodic reaction-diffusion systems with Dirichlet boundary conditions
%J Electronic Journal of Differential Equations
%D 2014
%V 2014
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a128/
%G en
%F EJDE_2014__2014__a128
Cao, Feng; Fu, Yelai. Convergence in comparable almost periodic reaction-diffusion systems with Dirichlet boundary conditions. Electronic Journal of Differential Equations, Tome 2014 (2014). http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a128/