Optimal ground state energy of two-phase conductors
Electronic Journal of Differential Equations, Tome 2014 (2014).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider the problem of distributing two conducting materials in a ball with fixed proportion in order to minimize the first eigenvalue of a Dirichlet operator. It was conjectured that the optimal distribution consists of putting the material with the highest conductivity in a ball around the center. In this paper, we show that the conjecture is false for all dimensions greater than or equal to two.
Classification : 49Q10, 35Q93, 35P15, 33C10
Keywords: eigenvalue optimization, two-phase conductors, rearrangements, Bessel function
@article{EJDE_2014__2014__a118,
     author = {Mohammadi, Abbasali and Yousefnezhad, Mohsen},
     title = {Optimal ground state energy of two-phase conductors},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2014},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a118/}
}
TY  - JOUR
AU  - Mohammadi, Abbasali
AU  - Yousefnezhad, Mohsen
TI  - Optimal ground state energy of two-phase conductors
JO  - Electronic Journal of Differential Equations
PY  - 2014
VL  - 2014
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a118/
LA  - en
ID  - EJDE_2014__2014__a118
ER  - 
%0 Journal Article
%A Mohammadi, Abbasali
%A Yousefnezhad, Mohsen
%T Optimal ground state energy of two-phase conductors
%J Electronic Journal of Differential Equations
%D 2014
%V 2014
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a118/
%G en
%F EJDE_2014__2014__a118
Mohammadi, Abbasali; Yousefnezhad, Mohsen. Optimal ground state energy of two-phase conductors. Electronic Journal of Differential Equations, Tome 2014 (2014). http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a118/