Almost periodic solutions of anisotropic elliptic-parabolic equations with variable exponents of nonlinearity
Electronic Journal of Differential Equations, Tome 2014 (2014).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove the well-posedness of Fourier problems for anisotropic elliptic-parabolic equations with variable exponents of nonlinearity without any restrictions at infinity. We obtain estimates of the weak solutions and conditions for the existence of periodic and almost periodic solutions. In addition, some properties of the weak solutions of the Fourier problem are considered.
Classification : 35K10, 35K55, 35K92
Keywords: Fourier problem, problem without initial conditions, degenerate implicit equations, elliptic-parabolic equation, periodic solution, almost periodic solution, nonlinear evolution equation
@article{EJDE_2014__2014__a105,
     author = {Bokalo, Mykola},
     title = {Almost periodic solutions of anisotropic elliptic-parabolic equations with variable exponents of nonlinearity},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2014},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a105/}
}
TY  - JOUR
AU  - Bokalo, Mykola
TI  - Almost periodic solutions of anisotropic elliptic-parabolic equations with variable exponents of nonlinearity
JO  - Electronic Journal of Differential Equations
PY  - 2014
VL  - 2014
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a105/
LA  - en
ID  - EJDE_2014__2014__a105
ER  - 
%0 Journal Article
%A Bokalo, Mykola
%T Almost periodic solutions of anisotropic elliptic-parabolic equations with variable exponents of nonlinearity
%J Electronic Journal of Differential Equations
%D 2014
%V 2014
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a105/
%G en
%F EJDE_2014__2014__a105
Bokalo, Mykola. Almost periodic solutions of anisotropic elliptic-parabolic equations with variable exponents of nonlinearity. Electronic Journal of Differential Equations, Tome 2014 (2014). http://geodesic.mathdoc.fr/item/EJDE_2014__2014__a105/