Asymptotic behavior of positive solutions of the nonlinear differential equation $t^2u''=u^n$
Electronic Journal of Differential Equations, Tome 2013 (2013).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article we study properties of positive solutions of the ordinary differential equation $t^2u''=u^n$ for $1$, we obtain conditions for their blow-up in finite time, and some properties for global solutions. Equations containing more general nonlinear terms are also considered.
Classification : 34A34, 34C11, 34C60
Keywords: nonlinear differential equation, Emden-Fowler equation, blow-up rate
@article{EJDE_2013__2013__a88,
     author = {Li, Meng-Rong and Yao, Hsin-Yu and Li, Yu-Tso},
     title = {Asymptotic behavior of positive solutions of the nonlinear differential equation $t^2u''=u^n$},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2013},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a88/}
}
TY  - JOUR
AU  - Li, Meng-Rong
AU  - Yao, Hsin-Yu
AU  - Li, Yu-Tso
TI  - Asymptotic behavior of positive solutions of the nonlinear differential equation $t^2u''=u^n$
JO  - Electronic Journal of Differential Equations
PY  - 2013
VL  - 2013
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a88/
LA  - en
ID  - EJDE_2013__2013__a88
ER  - 
%0 Journal Article
%A Li, Meng-Rong
%A Yao, Hsin-Yu
%A Li, Yu-Tso
%T Asymptotic behavior of positive solutions of the nonlinear differential equation $t^2u''=u^n$
%J Electronic Journal of Differential Equations
%D 2013
%V 2013
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a88/
%G en
%F EJDE_2013__2013__a88
Li, Meng-Rong; Yao, Hsin-Yu; Li, Yu-Tso. Asymptotic behavior of positive solutions of the nonlinear differential equation $t^2u''=u^n$. Electronic Journal of Differential Equations, Tome 2013 (2013). http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a88/