Existence of solutions for fractional Hamiltonian systems
Electronic Journal of Differential Equations, Tome 2013 (2013).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this work we prove the existence of solutions for the fractional differential equation $$ _{t}D_{\infty}^{\alpha}(_{-\infty}D_{t}^{\alpha}u(t)) + L(t)u(t) = \nabla W(t,u(t)),\quad u\in H^{\alpha}(\mathbb{R}, \mathbb{R}^{N}). $$ where $\alpha \in (1/2, 1)$. Assuming L is coercive at infinity we show that this equation has at least one nontrivial solution.
Classification : 26A33, 34C37, 35A15, 35B38
Keywords: Liouville-Weyl fractional derivative, fractional Hamiltonian systems, critical point, variational methods
@article{EJDE_2013__2013__a59,
     author = {Torres, Cesar},
     title = {Existence of solutions for fractional {Hamiltonian} systems},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2013},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a59/}
}
TY  - JOUR
AU  - Torres, Cesar
TI  - Existence of solutions for fractional Hamiltonian systems
JO  - Electronic Journal of Differential Equations
PY  - 2013
VL  - 2013
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a59/
LA  - en
ID  - EJDE_2013__2013__a59
ER  - 
%0 Journal Article
%A Torres, Cesar
%T Existence of solutions for fractional Hamiltonian systems
%J Electronic Journal of Differential Equations
%D 2013
%V 2013
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a59/
%G en
%F EJDE_2013__2013__a59
Torres, Cesar. Existence of solutions for fractional Hamiltonian systems. Electronic Journal of Differential Equations, Tome 2013 (2013). http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a59/