Global solvability for involutive systems on the torus
Electronic Journal of Differential Equations, Tome 2013 (2013).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we consider a class of involutive systems of n smooth vector fields on the torus of dimension n+1. We prove that the global solvability of this class is related to an algebraic condition involving Liouville forms and the connectedness of all sublevel and superlevel sets of the primitive of a certain 1-form associated with the system.
Classification : 35N10, 32M25
Keywords: global solvability, involutive systems, complex vector fields, Liouville number
@article{EJDE_2013__2013__a41,
     author = {de Medeira, Cleber},
     title = {Global solvability for involutive systems on the torus},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2013},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a41/}
}
TY  - JOUR
AU  - de Medeira, Cleber
TI  - Global solvability for involutive systems on the torus
JO  - Electronic Journal of Differential Equations
PY  - 2013
VL  - 2013
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a41/
LA  - en
ID  - EJDE_2013__2013__a41
ER  - 
%0 Journal Article
%A de Medeira, Cleber
%T Global solvability for involutive systems on the torus
%J Electronic Journal of Differential Equations
%D 2013
%V 2013
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a41/
%G en
%F EJDE_2013__2013__a41
de Medeira, Cleber. Global solvability for involutive systems on the torus. Electronic Journal of Differential Equations, Tome 2013 (2013). http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a41/