Ground state solution of a nonlocal boundary-value problem
Electronic Journal of Differential Equations, Tome 2013 (2013).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we apply the Nehari manifold method to study the Kirchhoff type equation $$ -\Big(a+b\int_\Omega|\nabla u|^2dx\Big)\Delta u=f(x,u) $$ subject to Dirichlet boundary conditions. Under a general 4-superlinear condition on the nonlinearity f, we prove the existence of a ground state solution, that is a nontrivial solution which has least energy among the set of nontrivial solutions. If f is odd with respect to the second variable, we also obtain the existence of infinitely many solutions. Under our assumptions the Nehari manifold does not need to be of class C^1.
Classification : 35J60, 35J25
Keywords: nonlocal problem, Kirchhoff's equation, ground state solution, Nehari manifold
@article{EJDE_2013__2013__a40,
     author = {Batkam, Cyril Joel},
     title = {Ground state solution of a nonlocal boundary-value problem},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2013},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a40/}
}
TY  - JOUR
AU  - Batkam, Cyril Joel
TI  - Ground state solution of a nonlocal boundary-value problem
JO  - Electronic Journal of Differential Equations
PY  - 2013
VL  - 2013
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a40/
LA  - en
ID  - EJDE_2013__2013__a40
ER  - 
%0 Journal Article
%A Batkam, Cyril Joel
%T Ground state solution of a nonlocal boundary-value problem
%J Electronic Journal of Differential Equations
%D 2013
%V 2013
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a40/
%G en
%F EJDE_2013__2013__a40
Batkam, Cyril Joel. Ground state solution of a nonlocal boundary-value problem. Electronic Journal of Differential Equations, Tome 2013 (2013). http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a40/