Impulsive neutral fractional integro-differential equations with state dependent delays and integral condition
Electronic Journal of Differential Equations, Tome 2013 (2013).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we establish the existence of a solution for an impulsive neutral fractional integro-differential state dependent delay equation subject to an integral boundary condition. The existence results are proved by applying the classical fixed point theorems. An example is presented to demonstrate the application of the results established.
Classification : 26A33, 34K05, 34A12, 34A37
Keywords: fractional order differential equation, nonlocal condition, contraction, impulsive condition
@article{EJDE_2013__2013__a177,
     author = {Dabas, Jaydev and Gautam, Ganga Ram},
     title = {Impulsive neutral fractional integro-differential equations with state dependent delays and integral condition},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2013},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a177/}
}
TY  - JOUR
AU  - Dabas, Jaydev
AU  - Gautam, Ganga Ram
TI  - Impulsive neutral fractional integro-differential equations with state dependent delays and integral condition
JO  - Electronic Journal of Differential Equations
PY  - 2013
VL  - 2013
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a177/
LA  - en
ID  - EJDE_2013__2013__a177
ER  - 
%0 Journal Article
%A Dabas, Jaydev
%A Gautam, Ganga Ram
%T Impulsive neutral fractional integro-differential equations with state dependent delays and integral condition
%J Electronic Journal of Differential Equations
%D 2013
%V 2013
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a177/
%G en
%F EJDE_2013__2013__a177
Dabas, Jaydev; Gautam, Ganga Ram. Impulsive neutral fractional integro-differential equations with state dependent delays and integral condition. Electronic Journal of Differential Equations, Tome 2013 (2013). http://geodesic.mathdoc.fr/item/EJDE_2013__2013__a177/